# A linear-time parameterized algorithm for computing the width of a DAG 

Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi and Alexandru I. Tomescu

24.06.2021, WG

Basics

- Directed acyclic graph (DAG) $G=(V, E)$

- Topological ordering: $O(|V|+|E|)[15,18]$

- Topologically induced subgraph, $G_{i}:=G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]$


$G_{6}:=$



## Basics

- Constant-time reachability queries



## Basics

- Constant-time reachability queries



## Basics

- Antichain

- Antichain reaches $v$

- Maximum antichain

- Width of DAG


Applications

## Applications of computing the width

- Bioinformatics [1, 11]


## Applications of computing the width

- Bioinformatics $[1,11]$
- Perfect Phylogeny Haplotyping


## Applications of computing the width

- Bioinformatics $[1,11]$
- Perfect Phylogeny Haplotyping
- Evolutionary computation [14]


## Applications of computing the width

- Bioinformatics [1, 11]
- Perfect Phylogeny Haplotyping
- Evolutionary computation [14]
- Dimension of a game


## Applications of computing the width

- Bioinformatics [1, 11]
- Perfect Phylogeny Haplotyping
- Evolutionary computation [14]
- Dimension of a game
- Distributed computation $[13,19]$


## Applications of computing the width

- Bioinformatics [1, 11]
- Perfect Phylogeny Haplotyping
- Evolutionary computation [14]
- Dimension of a game
- Distributed computation $[13,19]$
- $K$ mutual exclusion violation

Algorithms parameterized by the width $k$

## Why algorithms parameterized by $k$ ?

- Natural parameter
- Some applications: small $k$ (pan-genomes [16])
- FPT-algorithms $[20,5,2,10]$


# (Most) State-of-the-art: Minimum Path Cover 

## Basics

- Path cover



## Basics

- Minimum Path Cover (MPC)



## Basics

- Dilworth's Theorem [6]



## MPC algorithms

| Maximum Matching | Minimum Flow |
| :--- | :--- |
| $-O(\sqrt{\|V\|}\|E\|)[9,12]$ (posets) | $-O(\|V\|\|E\|)[17,8]$ |
| $-O\left(\|V\|^{2}+k \sqrt{k}\|V\|\right)[3]$ | $-O(k\|E\| \log \|V\|)[16]$ |
| $-O(\sqrt{\|V\|}\|E\|+k \sqrt{k}\|V\|)[4]$ |  |

## MPC algorithms

| Maximum Matching | Minimum Flow |
| :--- | :--- |
| $-O(\sqrt{\|V\|}\|E\|)[9,12]$ (posets) | $-O(\|V\|\|E\|)[17,8]$ |
| $-O\left(\|V\|^{2}+k \sqrt{k}\|V\|\right)[3]$ | $-O(k\|E\| \log \|V\|)[16]$ |
| $-O(\sqrt{\|V\|}\|E\|+k \sqrt{k}\|V\|)[4]$ |  |

Felsner et al. [7] recognize posets:

- $O(|V|)$, for $k \leq 3$.
- $O(|V| \log |V|)$, for $k=4$.
- "the case $k=5$ already seems to require an unpleasantly involved case analysis" [7, p. 359]


## Our result

## $O(f(k)(|V|+|E|))$ time algorithm Maximum Antichain

## Antichain domination

## Definition 1 (Dominates)

Antichain $B$ dominates antichain $A$ if $|A|=|B|$ and for each $b \in B, A$ reaches $b$


## Antichain domination

## Definition 1 (Dominates)

Antichain $B$ dominates antichain $A$ if $|A|=|B|$ and for each $b \in B, A$ reaches $b$


## Lemma 1

Domination is a partial order on antichains of $G$.

## Frontier Antichains

## Definition 2 (Frontier)

- Maximal elements of domination relation
- Antichains only dominated by themselves



## Frontier Antichains

## Definition 2 (Frontier)

- Maximal elements of domination relation
- Antichains only dominated by themselves



## Lemma 3

$G$ has at most $2^{k}$ frontier antichains

## $G$-frontier

If $A$ is a frontier antichain of $G$ we also say that $A$ is $G$-frontier

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories:

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories: Type $1: v_{i} \in A$

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories: Type $1: v_{i} \in A$

Type $2: v_{i} \notin A$

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories:

```
Type 1 : vi}\in
```

Lemma 4
If $A$ is type $1 G_{i}$-frontier, then $A \backslash\left\{v_{i}\right\}$ is $G_{i-1}$-frontier

Type $2: v_{i} \notin A$

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories:
Type $1: v_{i} \in A$
Lemma 4
If $A$ is type $1 G_{i}$-frontier, then $A \backslash\left\{v_{i}\right\}$ is $G_{i-1}$-frontier

## Lemma 6

If $B$ is $G_{i-1}$-frontier and $B$ does not reach $v_{i}$, then $B \cup\left\{v_{i}\right\}$ is type $1 G_{i}$-frontier

Type $2: v_{i} \notin A$

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories:
Type $1: v_{i} \in A$
Lemma 4
If $A$ is type $1 G_{i}$-frontier, then $A \backslash\left\{v_{i}\right\}$ is $G_{i-1}$-frontier

## Lemma 6

If $B$ is $G_{i-1}$-frontier and $B$ does not reach $v_{i}$, then $B \cup\left\{v_{i}\right\}$ is type $1 G_{i}$-frontier

Type $2: v_{i} \notin A$

## Lemma 5

If $A$ is type $2 G_{i}$-frontier, then $A$ is $G_{i-1}$-frontier

## Classification of $G_{i}$-frontiers

We classify $G_{i}$-frontiers $A$ into two categories:
Type $1: v_{i} \in A$

## Lemma 4

If $A$ is type $1 G_{i}$-frontier, then $A \backslash\left\{v_{i}\right\}$ is $G_{i-1}$-frontier

## Lemma 6

If $B$ is $G_{i-1}$-frontier and $B$ does not reach $v_{i}$, then $B \cup\left\{v_{i}\right\}$ is type $1 G_{i}$-frontier

Type $2: v_{i} \notin A$

## Lemma 5

If $A$ is type $2 G_{i}$-frontier, then $A$ is $G_{i-1}$-frontier

## Lemma 2

If $B$ is $G_{i-1}$-frontier but not $G_{i}$-frontier, then $B$ is dominated by type-1 $G_{i}$-frontier

# The Algorithm <br> (for posets) 

## Algorithm (simplified)

for $v_{i} \in v_{1}, \ldots, v_{|V|}$ in topological order do
for $A \in G_{i-1}$-frontiers do
if $A$ does not reach $v_{i}$ then
$\left\llcorner\right.$ Store $A \cup\left\{v_{i}\right\}$ as type $1 G_{i}$-frontier
for $A \in G_{i-1}$-frontiers do
if $\forall B \in$ type $1 G_{i}$-frontiers, $B$ does not dominate $A$ then
$L$ Store $A$ as type $2 G_{i}$-frontier
return Largest frontier

## Algorithm (simplified)

for $v_{i} \in v_{1}, \ldots, v_{|V|}$ in topological order do
for $A \in G_{i-1}$-frontiers do
if $A$ does not reach $v_{i}$ then
$L$ Store $A \cup\left\{v_{i}\right\}$ as type $1 G_{i}$-frontier
for $A \in G_{i-1}$-frontiers do
if $\forall B \in$ type $1 G_{i}$-frontiers, $B$ does not dominate $A$ then
$L$ Store $A$ as type $2 G_{i}$-frontier
return Largest frontier
$O\left(k^{2} 4^{k}|V|\right)$ : with constant-time reachability queries (posets)

## The Algorithm

(Maintain constant-time reachability queries)

## The Support

## Observation 1

When computing $G_{i}$-frontiers we only need reachability among vertices of $G_{i-1}$-frontiers and $v_{i}$

## The Support

## Observation 1

When computing $G_{i}$-frontiers we only need reachability among vertices of $G_{i-1}$-frontiers and $v_{i}$

Definition 3 (Support)

$$
S_{i}:=\bigcup_{A \in G_{i} \text {-frontiers }} A
$$

$G_{10}:=$


## The Support

## Observation 1

When computing $G_{i}$-frontiers we only need reachability among vertices of $G_{i-1}$-frontiers and $v_{i}$

Definition 3 (Support)

$$
S_{i}:=\bigcup_{A \in G_{i} \text {-frontiers }} A
$$

## Lemma 7 and 8 (Informal)

A vertex $v_{i}$ only belongs to a topologically adjacent sequence of supports $S_{i}, \ldots, S_{j}$
$\Rightarrow$ Theorem 2 and Theorem 3

## Algorithm

Observation 1
When computing $G_{i}$-frontiers we only need reachability among vertices of $S_{i-1} \cup\left\{v_{i}\right\}$

## Algorithm

## Observation 1

When computing $G_{i}$-frontiers we only need reachability among vertices of $S_{i-1} \cup\left\{v_{i}\right\}$

- Reduced to maintain reachability from vertices in $S_{j-1}$ to $v_{j}$ for each $j \leq i$ (Theorem 2)


## Algorithm

## Observation 1

When computing $G_{i}$-frontiers we only need reachability among vertices of $S_{i-1} \cup\left\{v_{i}\right\}$

- Reduced to maintain reachability from vertices in $S_{j-1}$ to $v_{j}$ for each $j \leq i$ (Theorem 2)
- Compute inductively reachability from vertices in $S_{i-1}$ to $v_{i}$, in $O\left(k 2^{k}\right)$ per edge incoming to $v_{i}$ (Theorem 3)


## Algorithm

## Observation 1

When computing $G_{i}$-frontiers we only need reachability among vertices of $S_{i-1} \cup\left\{v_{i}\right\}$

- Reduced to maintain reachability from vertices in $S_{j-1}$ to $v_{j}$ for each $j \leq i$ (Theorem 2)
- Compute inductively reachability from vertices in $S_{i-1}$ to $v_{i}$, in $O\left(k 2^{k}\right)$ per edge incoming to $v_{i}$ (Theorem 3)


## Theorem 1

Given a $D A G G=(V, E)$ of width $k$, we can compute a maximum antichain of it in time $O\left(k^{2} 4^{k}|V|+k 2^{k}|E|\right)$

## Acknowledgments

We thank the anonymous reviewers for their useful suggestions, and you for listening until the end ©

## Funding



Established by the European Commission

This work was partially funded by the ERC Starting Grant 851093 (SAFEBIO)

## References I

[1] Bonizzoni, P.
A linear-time algorithm for the perfect phylogeny
haplotype problem.
Algorithmica 48, 3 (2007), 267-285.
[2] Bova, S., Ganian, R., and Szeider, S.
Model checking existential logic on partially ordered sets. ACM Transactions on Computational Logic (TOCL) 17, 2 (2015), 1-35.
[3] Chen, Y., and Chen, Y.
An efficient algorithm for answering graph reachability queries.
In 2008 IEEE 24th International Conference on Data Engineering (2008), IEEE, pp. 893-902.
[4] Chen, Y., and Chen, Y.
On the graph decomposition.
In 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing (2014), IEEE, pp. 777-784.
[5] Colbourn, C. J., and Pulleyblank, W. R.
Minimizing setups in ordered sets of fixed width.
Order 1, 3 (1985), 225-229.
[6] Dilworth, R. P.
A decomposition theorem for partially ordered sets.
Annals of Mathematics 51, 1 (1950), 161-166.
[7] Felsner, S., Raghavan, V., and Spinrad, J.
Recognition algorithms for orders of small width and graphs of small dilworth number.
Order 20, 4 (2003), 351-364.
[8] Ford, L. R., and Fulkerson, D. R.
Maximal flow through a network.
In Classic papers in combinatorics. Springer, 2009,
pp. 243-248.
[9] Fulkerson, D. R.
Note on dilworth's decomposition theorem for partially ordered sets.
In Proc. Amer. Math. Soc (1956), vol. 7, pp. 701-702.
[10] Gajarskỳ, J., Hlinenỳ, P., Lokshtanov, D., Obdralek, J., Ordyniak, S., Ramanujan, M., and Saurabh, S.
Fo model checking on posets of bounded width.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE, pp. 963-974.
[11] Gramm, J., Nierhoff, T., Sharan, R., and Tantau, T.

Haplotyping with missing data via perfect path phylogenies.
Discrete Applied Mathematics 155, 6-7 (2007), 788-805.
[12] Hopcroft, J. E., and Karp, R. M.
An $n^{5 / 2}$ algorithm for maximum matchings in bipartite graphs.
SIAM Journal on computing 2, 4 (1973), 225-231.
[13] Ikiz, S., and Garg, V. K.
Efficient incremental optimal chain partition of distributed program traces.
In 26th IEEE International Conference on Distributed Computing Systems (ICDCS'06) (2006), IEEE, pp. 18-18.

## References V

[14] Jaśkowski, W., and Krawiec, K.
Formal analysis, hardness, and algorithms for extracting internal structure of test-based problems.
Evolutionary computation 19, 4 (2011), 639-671.
[15] Kahn, A. B.
Topological sorting of large networks.
Communications of the ACM 5, 11 (1962), 558-562.
[16] MÄkinen, V., Tomescu, A. I., Kuosmanen, A., Paavilainen, T., Gagie, T., and Chikhi, R.
Sparse Dynamic Programming on DAGs with Small Width.
ACM Transactions on Algorithms (TALG) 15, 2 (2019), 1-21.
[17] Ntafos, S. C., and Hakimi, S. L.
On path cover problems in digraphs and applications to program testing.
IEEE Transactions on Software Engineering, 5 (1979),
520-529.
[18] Tarjan, R. E.
Edge-disjoint spanning trees and depth-first search. Acta Informatica 6, 2 (1976), 171-185.
[19] Tomlinson, A. I., and Garg, V. K. Monitoring functions on global states of distributed programs.
Journal of Parallel and Distributed Computing 41, 2
(1997), 173-189.
[20] Van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., and Woeginger, G. J.

Precedence-constrained scheduling problems parameterized by partial order width.
In International conference on discrete optimization and operations research (2016), Springer, pp. 105-120.

