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Basics

e Directed acyclic graph (DAG) G = (V, E)
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Basics

e Topological ordering: O(|V| + |E]) [15, 18]
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Basics

e Topologically induced subgraph, G; := G[{v1,...,v;}]
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Basics

o Constant-time reachability queries
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Basics

o Constant-time reachability queries
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Basics

o Antichain




Basics

o Antichain reaches v
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Basics

e Maximum antichain
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Applications



Applications of computing the width

e Bioinformatics [1, 11]
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Applications of computing the width

e Bioinformatics [1, 11]
o Perfect Phylogeny Haplotyping

e Evolutionary computation [14]
o Dimension of a game

e Distributed computation [13, 19]

o K mutual exclusion violation
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Algorithms parameterized by
the width k



Why algorithms parameterized by k7

o Natural parameter

e Some applications: small & (pan-genomes [16])

e FPT-algorithms [20, 5, 2, 10]
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(Most) State-of-the-art:
Minimum Path Cover



Basics

e Path cover
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Basics

e Minimum Path Cover (MPC)
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Basics

e Dilworth’s Theorem [6]
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MPC algorithms

Maximum Matching ‘ Minimum Flow
- O(VIVIIE]) [9, 12] (posets) | — O([V||E]) [17, 8]
~O(|V] + kVE|V]) [3] ~ O(k|Ellog [V]) [16]

- O(WIVIIE| + kVE|V]) [4]
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MPC algorithms

Maximum Matching ‘ Minimum Flow
- O(VIVIIE]) [9, 12] (posets) | — O([V||E]) [17, 8]
~O(|V] + kVE|V]) [3] ~ O(k|Ellog [V]) [16]

- O(WIVIIE| + kVE|V]) [4]

Felsner et al. [7] recognize posets:
e O(|V]), for k < 3.
e O(|V]log|V]), for k = 4.
o “the case k = 5 already seems to require an unpleasantly
involved case analysis® [7, p. 359]
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Our result
O(f(k)(|V|+ |E]|)) time algorithm

Maximum Antichain
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Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b € B, A reaches b

7/15



Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b € B, A reaches b

Domination is a partial order on antichains of G. l

7/15




Frontier Antichains

Definition 2 (Frontier)

e Maximal elements of domination relation

o Antichains only dominated by themselves
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Frontier Antichains

Definition 2 (Frontier)

e Maximal elements of domination relation

o Antichains only dominated by themselves

" Ne e
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G has at most 28 frontier antichains |
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If A is a frontier antichain of G we
also say that A is G-frontier
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Classification of G;-frontiers

We classify G;-frontiers A into two categories:
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Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel :v; € A

If A is type 1 Gj-frontier, then A\ {v;} is Gij_1-frontier

If B is Gi_1-frontier and B does not reach v;, then B U {v;} is
type 1 Gi-frontier

Type 2 : v; € A

If A is type 2 G;-frontier, then A is G;_1-frontier \

If B is Gij_1-frontier but not G;-frontier, then B is dominated
by type-1 G;-frontier
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The Algorithm

(for posets)



Algorithm (simplified)

for v; € v1,...,vy| in topological order do
for A € G;_1-frontiers do
if A does not reach v; then
| Store AU {v;} as type 1 G;-frontier

for A € G;_1-frontiers do

if VB € type 1 G;-frontiers, B does not dominate A
then
| Store A as type 2 G;-frontier

return Largest frontier
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Algorithm (simplified)

for v; € v1,...,vy| in topological order do
for A € G;_1-frontiers do
if A does not reach v; then
| Store AU {v;} as type 1 G;-frontier

for A € G;_1-frontiers do

if VB € type 1 G;-frontiers, B does not dominate A
then
| Store A as type 2 G;-frontier

return Largest frontier

O(k%4F|V|): with constant-time reachability queries (posets)
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The Algorithm

(Maintain constant-time reachability
queries)
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The Support

Observation 1

When computing G;-frontiers we only need reachability among
vertices of G;_1-frontiers and v;
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The Support

When computing G;-frontiers we only need reachability among
vertices of G;_1-frontiers and v;

Definition 3 (Support)

S; = U A

A€G;-frontiers

A\

Lemma 7 and 8 (Informal)

A wvertex v; only belongs to a topologically adjacent sequence of
supports S;,...,S;

= Theorem 2 and Theorem 3
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Algorithm

When computing G;-frontiers we only need reachability among
vertices of S;—1 U {v;}
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Algorithm

When computing G;-frontiers we only need reachability among
vertices of S;—1 U {v;}

o Reduced to maintain reachability from vertices in S;_1 to
vj for each j <i (Theorem 2)

o Compute inductively reachability from vertices in S;—; to
v;, in O(k2¥) per edge incoming to v; (Theorem 3)

Given a DAG G = (V, E) of width k, we can compute a
mazimum antichain of it in time O(k24%|V| + k2F|E|)
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