A linear-time parameterized algorithm for

computing the width of a DAG

Manuel Caceres, Massimo Cairo, Brendan Mumey, Romeo
Rizzi and Alexandru I. Tomescu

24.06.2021, WG

1/15

Basics

1/15

Basics

e Directed acyclic graph (DAG) G = (V, E)

T
/‘\‘ / .
S

2/15

Basics

e Topological ordering: O(|V| + |E]) [15, 18]

v1, V2, V3, V4, Us, Vs, Ur, U, V9, V10, V11, V12

) v ,,,,////,/////////A;u

7
° o e
U3 \. U9> V12
V10
Us
[
vg

2/15

Basics

e Topologically induced subgraph, G; := G[{v1,...,v;}]

GlO .

[]
[J
v (g

2/15

Basics

o Constant-time reachability queries

. T

— N
e

u reaches v

2/15

Basics

o Constant-time reachability queries

./‘ \‘\
/‘

\g >/’

S. reaches (u,v) in O(1)

2/15

Basics

o Antichain

Basics

o Antichain reaches v

\

/‘\0
T

2/15

Basics

e Maximum antichain

0/‘ .\0
~—
=

2/15

Basics

o/‘ \:\0
° \o/ °
<:>< a

Applications

Applications of computing the width

e Bioinformatics [1, 11]

3/15

Applications of computing the width

e Bioinformatics [1, 11]
o Perfect Phylogeny Haplotyping

3/15

Applications of computing the width

e Bioinformatics [1, 11]
o Perfect Phylogeny Haplotyping

e Evolutionary computation [14]

3/15

Applications of computing the width

e Bioinformatics [1, 11]
o Perfect Phylogeny Haplotyping

e Evolutionary computation [14]
o Dimension of a game

3/15

Applications of computing the width

e Bioinformatics [1, 11]
o Perfect Phylogeny Haplotyping

e Evolutionary computation [14]
o Dimension of a game

e Distributed computation [13, 19]

3/15

Applications of computing the width

e Bioinformatics [1, 11]
o Perfect Phylogeny Haplotyping

e Evolutionary computation [14]
o Dimension of a game

e Distributed computation [13, 19]

o K mutual exclusion violation

3/15

Algorithms parameterized by
the width k

Why algorithms parameterized by k7

o Natural parameter

e Some applications: small & (pan-genomes [16])

e FPT-algorithms [20, 5, 2, 10]

4/15

(Most) State-of-the-art:
Minimum Path Cover

Basics

e Path cover

5/15

Basics

e Minimum Path Cover (MPC)

5/15

Basics

e Dilworth’s Theorem [6]

5/15

MPC algorithms

Maximum Matching ‘ Minimum Flow
- O(VIVIIE]) [9, 12] (posets) | — O([V||E]) [17, 8]
~O(|V] + kVE|V]) [3] ~ O(k|Ellog [V]) [16]

- O(WIVIIE| + kVE|V]) [4]

6/15

MPC algorithms

Maximum Matching ‘ Minimum Flow
- O(VIVIIE]) [9, 12] (posets) | — O([V||E]) [17, 8]
~O(|V] + kVE|V]) [3] ~ O(k|Ellog [V]) [16]

- O(WIVIIE| + kVE|V]) [4]

Felsner et al. [7] recognize posets:
e O(|V]), for k < 3.
e O(|V]log|V]), for k = 4.
o “the case k = 5 already seems to require an unpleasantly
involved case analysis® [7, p. 359]

6/15

Our result
O(f(k)(|V|+ |E]|)) time algorithm

Maximum Antichain

6/15

Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b € B, A reaches b

7/15

Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b € B, A reaches b

Domination is a partial order on antichains of G. l

7/15

Frontier Antichains

Definition 2 (Frontier)

e Maximal elements of domination relation

o Antichains only dominated by themselves

" Ne e
\. .>‘

8/15

Frontier Antichains

Definition 2 (Frontier)

e Maximal elements of domination relation

o Antichains only dominated by themselves

" Ne e
\. .>.

G has at most 28 frontier antichains |

8/15

If A is a frontier antichain of G we
also say that A is G-frontier

9/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:

10/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel : v; € A

10/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel : v; € A

Type 2 : v; € A

10/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel :v; € A

If A is type 1 Gj-frontier, then A\ {v;} is Gij_1-frontier

Type2 :v; & A

10/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel :v; € A

If A is type 1 Gj-frontier, then A\ {v;} is Gij_1-frontier

If B is Gi_1-frontier and B does not reach v;, then B U {v;} is
type 1 Gi-frontier

Type2 :v; & A

10/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel :v; € A

If A is type 1 Gj-frontier, then A\ {v;} is Gij_1-frontier

If B is Gi_1-frontier and B does not reach v;, then B U {v;} is
type 1 Gi-frontier

Type2 :v; & A

If A is type 2 G;-frontier, then A is G;_1-frontier l

10/15

Classification of G;-frontiers

We classify G;-frontiers A into two categories:
Typel :v; € A

If A is type 1 Gj-frontier, then A\ {v;} is Gij_1-frontier

If B is Gi_1-frontier and B does not reach v;, then B U {v;} is
type 1 Gi-frontier

Type 2 : v; € A

If A is type 2 G;-frontier, then A is G;_1-frontier \

If B is Gij_1-frontier but not G;-frontier, then B is dominated
by type-1 G;-frontier

10/15

The Algorithm

(for posets)

Algorithm (simplified)

for v; € v1,...,vy| in topological order do
for A € G;_1-frontiers do
if A does not reach v; then
| Store AU {v;} as type 1 G;-frontier

for A € G;_1-frontiers do

if VB € type 1 G;-frontiers, B does not dominate A
then
| Store A as type 2 G;-frontier

return Largest frontier

11/15

Algorithm (simplified)

for v; € v1,...,vy| in topological order do
for A € G;_1-frontiers do
if A does not reach v; then
| Store AU {v;} as type 1 G;-frontier

for A € G;_1-frontiers do

if VB € type 1 G;-frontiers, B does not dominate A
then
| Store A as type 2 G;-frontier

return Largest frontier

O(k%4F|V|): with constant-time reachability queries (posets)

11/15

The Algorithm

(Maintain constant-time reachability
queries)

11/15

The Support

Observation 1

When computing G;-frontiers we only need reachability among
vertices of G;_1-frontiers and v;

12/15

The Support

When computing G;-frontiers we only need reachability among
vertices of G;_1-frontiers and v;

\

Definition 3 (Support)

S; = U A

A€G;-frontiers

A\

12/15

The Support

When computing G;-frontiers we only need reachability among
vertices of G;_1-frontiers and v;

Definition 3 (Support)

S; = U A

A€G;-frontiers

A\

Lemma 7 and 8 (Informal)

A wvertex v; only belongs to a topologically adjacent sequence of
supports S;,...,S;

= Theorem 2 and Theorem 3

12/15

Algorithm

When computing G;-frontiers we only need reachability among
vertices of S;—1 U {v;}

13/15

Algorithm

When computing G;-frontiers we only need reachability among
vertices of S;—1 U {v;}

o Reduced to maintain reachability from vertices in S;_1 to
vj for each j <i (Theorem 2)

13/15

Algorithm

Observation 1

When computing G;-frontiers we only need reachability among
vertices of S;—1 U {v;}

o Reduced to maintain reachability from vertices in S;_1 to
vj for each j <i (Theorem 2)

o Compute inductively reachability from vertices in S;—; to
v;, in O(k2¥) per edge incoming to v; (Theorem 3)

13/15

Algorithm

When computing G;-frontiers we only need reachability among
vertices of S;—1 U {v;}

o Reduced to maintain reachability from vertices in S;_1 to
vj for each j <i (Theorem 2)

o Compute inductively reachability from vertices in S;—; to
v;, in O(k2¥) per edge incoming to v; (Theorem 3)

Given a DAG G = (V, E) of width k, we can compute a
mazimum antichain of it in time O(k24%|V| + k2F|E|)

13/15

Acknowledgments

We thank the anonymous reviewers for their
useful suggestions, and you for listening until the
end ©

14 /15

European Research Council

Established by the European Commission

This work was partially funded by the ERC Starting Grant
851093 (SAFEBIO)

15/15

References 1

1]

Bonizzoni, P.

A linear-time algorithm for the perfect phylogeny
haplotype problem.

Algorithmica 48, 3 (2007), 267-285.

Bova, S., GANIAN, R., AND SZEIDER, S.

Model checking existential logic on partially ordered sets.
ACM Transactions on Computational Logic (TOCL) 17, 2
(2015), 1-35.

CHEN, Y., AND CHEN, Y.

An efficient algorithm for answering graph reachability
queries.

In 2008 IEEE 24th International Conference on Data
Engineering (2008), IEEE, pp. 893-902.

15/15

References 11

[4]

CHEN, Y., AND CHEN, Y.

On the graph decomposition.

In 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing (2014), IEEE, pp. 777-784.

COLBOURN, C. J., AND PULLEYBLANK, W. R.
Minimizing setups in ordered sets of fixed width.
Order 1, 3 (1985), 225-229.

DiwortH, R. P.
A decomposition theorem for partially ordered sets.
Annals of Mathematics 51, 1 (1950), 161-166.

FELSNER, S., RAGHAVAN, V., AND SPINRAD, J.
Recognition algorithms for orders of small width and
graphs of small dilworth number.

Order 20, 4 (2003), 351-364.

15/15

References 111

8]

[10]

Forp, L. R., AND FULKERSON, D. R.

Maximal flow through a network.

In Classic papers in combinatorics. Springer, 2009,

pp. 243-248.

FULKERSON, D. R.

Note on dilworth’s decomposition theorem for partially
ordered sets.

In Proc. Amer. Math. Soc (1956), vol. 7, pp. 701-702.

GAJARSKY, J., HLINENY, P., LOKSHTANOV, D.,
OBDRALEK, J., ORDYNIAK, S., RAMANUJAN, M., AND
SAURABH, S.

Fo model checking on posets of bounded width.

In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (2015), IEEE, pp. 963-974.

15/15

References IV

[11]

[12]

GRAMM, J., NIERHOFF, T., SHARAN, R., AND TANTAU,
T.

Haplotyping with missing data via perfect path
phylogenies.

Discrete Applied Mathematics 155, 6-7 (2007), 788-805.

HopcrorT, J. E., AND KARP, R. M.

An n°/? algorithm for maximum matchings in bipartite
graphs.

SIAM Journal on computing 2, 4 (1973), 225-231.

Ik1z, S., AND GARG, V. K.

Efficient incremental optimal chain partition of distributed
program traces.

In 26th IEEFE International Conference on Distributed
Computing Systems (ICDCS’06) (2006), IEEE, pp. 18-18.

15/15

References V

[14]

JASKowsKi, W., AND KrAawWIEC, K.

Formal analysis, hardness, and algorithms for extracting
internal structure of test-based problems.

Evolutionary computation 19, 4 (2011), 639-671.

Kann, A. B.
Topological sorting of large networks.
Communications of the ACM 5, 11 (1962), 558-562.

MAKINEN, V., ToMmEscU, A. I., KUOSMANEN, A.,
PAAVILAINEN, T., GAGIE, T., AND CHIKHI, R.

Sparse Dynamic Programming on DAGs with Small
Width.

ACM Transactions on Algorithms (TALG) 15, 2 (2019),
1-21.

15/15

References VI

[17]

NTAFoOs, S. C., AND HAakIMI, S. L.

On path cover problems in digraphs and applications to
program testing.

[EEFE Transactions on Software Engineering, 5 (1979),
520-529.

TArRJAN, R. E.

Edge-disjoint spanning trees and depth-first search.
Acta Informatica 6, 2 (1976), 171-185.

ToMLINSON, A. I., AND GARG, V. K.

Monitoring functions on global states of distributed
programs.

Journal of Parallel and Distributed Computing 41, 2
(1997), 173-189.

15/15

References VII

[20] VAN BEVERN, R., BREDERECK, R., BULTEAU, L.,
Komusiewicz, C., TALMON, N., AND WOEGINGER,
G. J.
Precedence-constrained scheduling problems parameterized
by partial order width.
In International conference on discrete optimization and
operations research (2016), Springer, pp. 105-120.

15/15

