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Basics

Directed acyclic graph (DAG) G = (V,E)
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Basics

Topological ordering: O(|V |+ |E|) [15, 18]
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Basics

Topologically induced subgraph, Gi := G[{v1, . . . , vi}]
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Basics

Constant-time reachability queries
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Constant-time reachability queries
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Antichain

2 / 15



Basics

Antichain reaches v
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Basics

Maximum antichain
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Width of DAG
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Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation
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Algorithms parameterized by
the width k

3 / 15



Why algorithms parameterized by k?

Natural parameter

Some applications: small k (pan-genomes [16])

FPT-algorithms [20, 5, 2, 10]
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(Most) State-of-the-art:
Minimum Path Cover
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Basics

Path cover
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Basics

Minimum Path Cover (MPC)

5 / 15



Basics

Dilworth’s Theorem [6]
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MPC algorithms

Maximum Matching Minimum Flow

– O(
√
|V ||E|) [9, 12] (posets) – O(|V ||E|) [17, 8]

– O(|V |2 + k
√
k|V |) [3] – O(k|E| log |V |) [16]

– O(
√
|V ||E|+ k

√
k|V |) [4]

Felsner et al. [7] recognize posets:

O(|V |), for k ≤ 3.

O(|V | log |V |), for k = 4.

“the case k = 5 already seems to require an unpleasantly
involved case analysis“ [7, p. 359]
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Our result
O(f (k)(|V | + |E|)) time algorithm

Maximum Antichain
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Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b ∈ B, A reaches b

Lemma 1

Domination is a partial order on antichains of G.
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Frontier Antichains

Definition 2 (Frontier)

Maximal elements of domination relation

Antichains only dominated by themselves

Lemma 3

G has at most 2k frontier antichains
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Definition 2 (Frontier)

Maximal elements of domination relation

Antichains only dominated by themselves

Lemma 3
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G-frontier

If A is a frontier antichain of G we
also say that A is G-frontier
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Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier
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The Algorithm
(for posets)
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Algorithm (simplified)

for vi ∈ v1, . . . , v|V | in topological order do

for A ∈ Gi−1-frontiers do
if A does not reach vi then

Store A ∪ {vi} as type 1 Gi-frontier

for A ∈ Gi−1-frontiers do
if ∀B ∈ type 1 Gi-frontiers, B does not dominate A
then

Store A as type 2 Gi-frontier

return Largest frontier

O(k24k|V |): with constant-time reachability queries (posets)
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The Algorithm
(Maintain constant-time reachability

queries)
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The Support

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Gi−1-frontiers and vi

Definition 3 (Support)

Si :=
⋃

A∈Gi-frontiers

A
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The Support

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Gi−1-frontiers and vi

Definition 3 (Support)

Si :=
⋃

A∈Gi-frontiers

A

Lemma 7 and 8 (Informal)

A vertex vi only belongs to a topologically adjacent sequence of
supports Si, . . . , Sj

⇒ Theorem 2 and Theorem 3

12 / 15



Algorithm

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Si−1 ∪ {vi}

Reduced to maintain reachability from vertices in Sj−1 to
vj for each j ≤ i (Theorem 2)

Compute inductively reachability from vertices in Si−1 to
vi, in O(k2k) per edge incoming to vi (Theorem 3)

Theorem 1

Given a DAG G = (V,E) of width k, we can compute a
maximum antichain of it in time O(k24k|V |+ k2k|E|)
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