
A linear-time parameterized algorithm for
computing the width of a DAG

Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo
Rizzi and Alexandru I. Tomescu

24.06.2021, WG

1 / 15

Basics

1 / 15

Basics

Directed acyclic graph (DAG) G = (V,E)

2 / 15

Basics

Topological ordering: O(|V |+ |E|) [15, 18]

2 / 15

Basics

Topologically induced subgraph, Gi := G[{v1, . . . , vi}]

2 / 15

Basics

Constant-time reachability queries

2 / 15

Basics

Constant-time reachability queries

2 / 15

Basics

Antichain

2 / 15

Basics

Antichain reaches v

2 / 15

Basics

Maximum antichain

2 / 15

Basics

Width of DAG

2 / 15

Applications

2 / 15

Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation

3 / 15

Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation

3 / 15

Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation

3 / 15

Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation

3 / 15

Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation

3 / 15

Applications of computing the width

Bioinformatics [1, 11]

Perfect Phylogeny Haplotyping

Evolutionary computation [14]

Dimension of a game

Distributed computation [13, 19]

K mutual exclusion violation

3 / 15

Algorithms parameterized by
the width k

3 / 15

Why algorithms parameterized by k?

Natural parameter

Some applications: small k (pan-genomes [16])

FPT-algorithms [20, 5, 2, 10]

4 / 15

(Most) State-of-the-art:
Minimum Path Cover

4 / 15

Basics

Path cover

5 / 15

Basics

Minimum Path Cover (MPC)

5 / 15

Basics

Dilworth’s Theorem [6]

5 / 15

MPC algorithms

Maximum Matching Minimum Flow

– O(
√
|V ||E|) [9, 12] (posets) – O(|V ||E|) [17, 8]

– O(|V |2 + k
√
k|V |) [3] – O(k|E| log |V |) [16]

– O(
√
|V ||E|+ k

√
k|V |) [4]

Felsner et al. [7] recognize posets:

O(|V |), for k ≤ 3.

O(|V | log |V |), for k = 4.

“the case k = 5 already seems to require an unpleasantly
involved case analysis“ [7, p. 359]

6 / 15

MPC algorithms

Maximum Matching Minimum Flow

– O(
√
|V ||E|) [9, 12] (posets) – O(|V ||E|) [17, 8]

– O(|V |2 + k
√
k|V |) [3] – O(k|E| log |V |) [16]

– O(
√
|V ||E|+ k

√
k|V |) [4]

Felsner et al. [7] recognize posets:

O(|V |), for k ≤ 3.

O(|V | log |V |), for k = 4.

“the case k = 5 already seems to require an unpleasantly
involved case analysis“ [7, p. 359]

6 / 15

Our result
O(f (k)(|V | + |E|)) time algorithm

Maximum Antichain

6 / 15

Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b ∈ B, A reaches b

Lemma 1

Domination is a partial order on antichains of G.

7 / 15

Antichain domination

Definition 1 (Dominates)

Antichain B dominates antichain A if |A| = |B| and for each
b ∈ B, A reaches b

Lemma 1

Domination is a partial order on antichains of G.

7 / 15

Frontier Antichains

Definition 2 (Frontier)

Maximal elements of domination relation

Antichains only dominated by themselves

Lemma 3

G has at most 2k frontier antichains

8 / 15

Frontier Antichains

Definition 2 (Frontier)

Maximal elements of domination relation

Antichains only dominated by themselves

Lemma 3

G has at most 2k frontier antichains

8 / 15

G-frontier

If A is a frontier antichain of G we
also say that A is G-frontier

9 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

Classification of Gi-frontiers

We classify Gi-frontiers A into two categories:

Type 1 : vi ∈ A

Lemma 4

If A is type 1 Gi-frontier, then A \ {vi} is Gi−1-frontier

Lemma 6

If B is Gi−1-frontier and B does not reach vi, then B ∪ {vi} is
type 1 Gi-frontier

Type 2 : vi 6∈ A

Lemma 5

If A is type 2 Gi-frontier, then A is Gi−1-frontier

Lemma 2

If B is Gi−1-frontier but not Gi-frontier, then B is dominated
by type-1 Gi-frontier

10 / 15

The Algorithm
(for posets)

10 / 15

Algorithm (simplified)

for vi ∈ v1, . . . , v|V | in topological order do

for A ∈ Gi−1-frontiers do
if A does not reach vi then

Store A ∪ {vi} as type 1 Gi-frontier

for A ∈ Gi−1-frontiers do
if ∀B ∈ type 1 Gi-frontiers, B does not dominate A
then

Store A as type 2 Gi-frontier

return Largest frontier

O(k24k|V |): with constant-time reachability queries (posets)

11 / 15

Algorithm (simplified)

for vi ∈ v1, . . . , v|V | in topological order do

for A ∈ Gi−1-frontiers do
if A does not reach vi then

Store A ∪ {vi} as type 1 Gi-frontier

for A ∈ Gi−1-frontiers do
if ∀B ∈ type 1 Gi-frontiers, B does not dominate A
then

Store A as type 2 Gi-frontier

return Largest frontier

O(k24k|V |): with constant-time reachability queries (posets)

11 / 15

The Algorithm
(Maintain constant-time reachability

queries)

11 / 15

The Support

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Gi−1-frontiers and vi

Definition 3 (Support)

Si :=
⋃

A∈Gi-frontiers

A

12 / 15

The Support

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Gi−1-frontiers and vi

Definition 3 (Support)

Si :=
⋃

A∈Gi-frontiers

A

12 / 15

The Support

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Gi−1-frontiers and vi

Definition 3 (Support)

Si :=
⋃

A∈Gi-frontiers

A

Lemma 7 and 8 (Informal)

A vertex vi only belongs to a topologically adjacent sequence of
supports Si, . . . , Sj

⇒ Theorem 2 and Theorem 3

12 / 15

Algorithm

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Si−1 ∪ {vi}

Reduced to maintain reachability from vertices in Sj−1 to
vj for each j ≤ i (Theorem 2)

Compute inductively reachability from vertices in Si−1 to
vi, in O(k2k) per edge incoming to vi (Theorem 3)

Theorem 1

Given a DAG G = (V,E) of width k, we can compute a
maximum antichain of it in time O(k24k|V |+ k2k|E|)

13 / 15

Algorithm

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Si−1 ∪ {vi}

Reduced to maintain reachability from vertices in Sj−1 to
vj for each j ≤ i (Theorem 2)

Compute inductively reachability from vertices in Si−1 to
vi, in O(k2k) per edge incoming to vi (Theorem 3)

Theorem 1

Given a DAG G = (V,E) of width k, we can compute a
maximum antichain of it in time O(k24k|V |+ k2k|E|)

13 / 15

Algorithm

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Si−1 ∪ {vi}

Reduced to maintain reachability from vertices in Sj−1 to
vj for each j ≤ i (Theorem 2)

Compute inductively reachability from vertices in Si−1 to
vi, in O(k2k) per edge incoming to vi (Theorem 3)

Theorem 1

Given a DAG G = (V,E) of width k, we can compute a
maximum antichain of it in time O(k24k|V |+ k2k|E|)

13 / 15

Algorithm

Observation 1

When computing Gi-frontiers we only need reachability among
vertices of Si−1 ∪ {vi}

Reduced to maintain reachability from vertices in Sj−1 to
vj for each j ≤ i (Theorem 2)

Compute inductively reachability from vertices in Si−1 to
vi, in O(k2k) per edge incoming to vi (Theorem 3)

Theorem 1

Given a DAG G = (V,E) of width k, we can compute a
maximum antichain of it in time O(k24k|V |+ k2k|E|)

13 / 15

Acknowledgments

We thank the anonymous reviewers for their
useful suggestions, and you for listening until the

end

14 / 15

Funding

This work was partially funded by the ERC Starting Grant
851093 (SAFEBIO)

15 / 15

References I

[1] Bonizzoni, P.
A linear-time algorithm for the perfect phylogeny
haplotype problem.
Algorithmica 48, 3 (2007), 267–285.

[2] Bova, S., Ganian, R., and Szeider, S.
Model checking existential logic on partially ordered sets.
ACM Transactions on Computational Logic (TOCL) 17, 2
(2015), 1–35.

[3] Chen, Y., and Chen, Y.
An efficient algorithm for answering graph reachability
queries.
In 2008 IEEE 24th International Conference on Data
Engineering (2008), IEEE, pp. 893–902.

15 / 15

References II

[4] Chen, Y., and Chen, Y.
On the graph decomposition.
In 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing (2014), IEEE, pp. 777–784.

[5] Colbourn, C. J., and Pulleyblank, W. R.
Minimizing setups in ordered sets of fixed width.
Order 1, 3 (1985), 225–229.

[6] Dilworth, R. P.
A decomposition theorem for partially ordered sets.
Annals of Mathematics 51, 1 (1950), 161–166.

[7] Felsner, S., Raghavan, V., and Spinrad, J.
Recognition algorithms for orders of small width and
graphs of small dilworth number.
Order 20, 4 (2003), 351–364.

15 / 15

References III

[8] Ford, L. R., and Fulkerson, D. R.
Maximal flow through a network.
In Classic papers in combinatorics. Springer, 2009,
pp. 243–248.

[9] Fulkerson, D. R.
Note on dilworth’s decomposition theorem for partially
ordered sets.
In Proc. Amer. Math. Soc (1956), vol. 7, pp. 701–702.

[10] Gajarskỳ, J., Hlinenỳ, P., Lokshtanov, D.,
Obdralek, J., Ordyniak, S., Ramanujan, M., and
Saurabh, S.
Fo model checking on posets of bounded width.
In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (2015), IEEE, pp. 963–974.

15 / 15

References IV

[11] Gramm, J., Nierhoff, T., Sharan, R., and Tantau,
T.
Haplotyping with missing data via perfect path
phylogenies.
Discrete Applied Mathematics 155, 6-7 (2007), 788–805.

[12] Hopcroft, J. E., and Karp, R. M.
An n5/2 algorithm for maximum matchings in bipartite
graphs.
SIAM Journal on computing 2, 4 (1973), 225–231.

[13] Ikiz, S., and Garg, V. K.
Efficient incremental optimal chain partition of distributed
program traces.
In 26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06) (2006), IEEE, pp. 18–18.

15 / 15

References V

[14] Jaśkowski, W., and Krawiec, K.
Formal analysis, hardness, and algorithms for extracting
internal structure of test-based problems.
Evolutionary computation 19, 4 (2011), 639–671.

[15] Kahn, A. B.
Topological sorting of large networks.
Communications of the ACM 5, 11 (1962), 558–562.

[16] Mäkinen, V., Tomescu, A. I., Kuosmanen, A.,
Paavilainen, T., Gagie, T., and Chikhi, R.
Sparse Dynamic Programming on DAGs with Small
Width.
ACM Transactions on Algorithms (TALG) 15, 2 (2019),
1–21.

15 / 15

References VI

[17] Ntafos, S. C., and Hakimi, S. L.
On path cover problems in digraphs and applications to
program testing.
IEEE Transactions on Software Engineering, 5 (1979),
520–529.

[18] Tarjan, R. E.
Edge-disjoint spanning trees and depth-first search.
Acta Informatica 6, 2 (1976), 171–185.

[19] Tomlinson, A. I., and Garg, V. K.
Monitoring functions on global states of distributed
programs.
Journal of Parallel and Distributed Computing 41, 2
(1997), 173–189.

15 / 15

References VII

[20] Van Bevern, R., Bredereck, R., Bulteau, L.,
Komusiewicz, C., Talmon, N., and Woeginger,
G. J.
Precedence-constrained scheduling problems parameterized
by partial order width.
In International conference on discrete optimization and
operations research (2016), Springer, pp. 105–120.

15 / 15

