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Maximal Substrings Problem

Find all maximal substrings of S[1,m] that are also substrings
of a text T [1, n]

Solved in O(m) using the suffix tree of T

The algorithm maintains two integers i, j representing a
substring S[i, j]

It uses child to advance j, when no possible outputs a
maximal substring and starts applying suffix-link to
advance i until an application of child is possible again
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Block Tree definition

A node v, representing v.blk = T [i, i + b− 1] can be of three
types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a
leaf of the Block Tree

BackBlock: Otherwise, if T [i− b, i + b− 1] and T [i, i + 2b− 1]
are not their leftmost occurrences in T , then the
block is replaced by its leftmost occurrence in T

InternalBlock: Otherwise, the block is split into r blocks of size⌈
b
r

⌉
and

⌊
b
r

⌋
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