Faster Repetition-Aware Compressed Suffix Trees based on Block Trees

Manuel Cáceres / Gonzalo Navarro

SPIRE

09/09/2019

Context Suffix Tree Compressed Suffix Tree Repetition-Aware CSTs Block Tree

Context

• The amount of data is in constant growth

Context

- The amount of data is in constant growth
- Complex queries on these data are required

Context

- The amount of data is in constant growth
- Complex queries on these data are required

Suffix Tree

T = mississippi\$

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CST:
Block Tree

Space Usage

Suffix Tree: $\Theta(n \log n)$ bits

• Engineered implementation: ~ 80 bits per symbol (bps)

- Engineered implementation: ~ 80 bits per symbol (bps)
- A human genome: $\sim 700MB$

- Engineered implementation: ~ 80 bits per symbol (bps)
- A human genome: $\sim 700MB$
- Suffix Tree of one genome: $\sim 30GB$

- Engineered implementation: ~ 80 bits per symbol (bps)
- A human genome: $\sim 700MB$
- Suffix Tree of one genome: $\sim 30GB$

 $\sim 30TB$

Context Suffix Tree Compressed Suffix Tree Repetition-Aware CSTs Block Tree

Compressed Suffix Tree

Introduction
Proposal
Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data Structures

• Compressed Suffix Array (CSA)

- Compressed Suffix Array (CSA)
- Compressed LCP

- Compressed Suffix Array (CSA)
- Compressed LCP
- Topology representation

- Compressed Suffix Array (CSA)
- Compressed LCP
- Topology representation

Primitives

Range min-Max Tree

$$rmM$$
-tree = $\begin{pmatrix} e = 0 \\ m = 0 \end{pmatrix}$

$$\begin{pmatrix} e = 4 \\ m = 1 \end{pmatrix} \qquad \begin{pmatrix} e = -4 \\ m = -4 \end{pmatrix}$$

$$\begin{pmatrix} e = 4 \\ m = -2 \end{pmatrix} \qquad \begin{pmatrix} e = -2 \\ m = -3 \end{pmatrix} \qquad \begin{pmatrix} e = -2 \\ m = -2 \end{pmatrix}$$

$$\begin{pmatrix} e = 2 \\ m = 1 \end{pmatrix} \qquad \begin{pmatrix} e = 0 \\ m = -2 \end{pmatrix} \qquad \begin{pmatrix} e = 0 \\ m = -2 \end{pmatrix} \qquad \begin{pmatrix} e = -2 \\ m = -1 \end{pmatrix}$$

$$P = (()((()()))(()(()())(()()))$$

• Still a lot of space

- Still a lot of space
- Many collections are highly repetitive

- Still a lot of space
- Many collections are highly repetitive
- BWT-Runs, Lempel-Ziv and Grammar based indexes

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Context Suffix Tree Compressed Suffix Tree Repetition-Aware CSTs Block Tree

Repetition-Aware CSTs

• Abeliuk et. al

- Abeliuk et. al
 - Run-length CSA (RLCSA)
 - $\bullet\,$ No parentheses topology

- Abeliuk et. al
 - Run-length CSA (RLCSA)
 - No parentheses topology

Performance

It uses $\sim 1-2$ bps but operates in 10^{-3} sec.

- Abeliuk et. al
 - Run-length CSA (RLCSA)No parentheses topology

Performance

It uses $\sim 1-2$ bps but operates in 10^{-3} sec.

• Grammar-Compressed Suffix Tree (GCST)

- Abeliuk et. al
 - Run-length CSA (RLCSA)
 - No parentheses topology

Performance

It uses $\sim 1-2$ bps but operates in 10^{-3} sec.

- Grammar-Compressed Suffix Tree (GCST)
 - Run-length CSA (RLCSA)
 - Topology: Grammar-Compressed Topology (GCT)

- Abeliuk et. al
 - Run-length CSA (RLCSA)
 - No parentheses topology

Performance

It uses $\sim 1-2$ bps but operates in 10^{-3} sec.

- Grammar-Compressed Suffix Tree (GCST)
 - Run-length CSA (RLCSA)
 - Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ~ 2 bps and operates in 10^{-5} sec.

Introduction
Proposal
Results
Conclusions/Future Work

Context Suffix Tree Compressed Suffix Tree Repetition-Aware CSTs Block Tree

Block Tree

Block Tree

• Lempel-Ziv bounded structure

Block Tree

• Lempel-Ziv bounded structure

• It divides the text into blocks and uses *back pointers* to previous occurrences

Main Idea

"Represent the balanced parentheses topology with a Block Tree and enhance its nodes with excess and min_excess information to answer the primitives efficiently"

Block Tree Compressed Topology (BT-CT)

Augmentation

Operations

"The basic principle to solve the operations is to compute them recursively and used the stored fields to skip recursive computation"

fwd- $search(i, d \le 0)$

fwd- $searc\overline{h(i, d \leq 0)}$

BT-CST

Topology Operations CSA based Maximal Substrings

Results

Results – Topology Operations

Results – CSA Based Operations

Results – Maximal Substrings

• Fastest repetition-aware parenthesis topology

- Fastest repetition-aware parenthesis topology
- Fastest repetition-aware compressed suffix tree

- Fastest repetition-aware parenthesis topology
- Fastest repetition-aware compressed suffix tree
- Public available code for researchers and practitioners

- Fastest repetition-aware parenthesis topology
- Fastest repetition-aware compressed suffix tree
- Public available code for researchers and practitioners
- Lack of worst-case time analysis or new algorithms for primitives

- Fastest repetition-aware parenthesis topology
- Fastest repetition-aware compressed suffix tree
- Public available code for researchers and practitioners
- Lack of worst-case time analysis or new algorithms for primitives
- Time improvement on CSA based operations (WCTA'19)

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees

Manuel Cáceres / Gonzalo Navarro

SPIRE

09/09/2019

bwd- $search(i, d \le 0)$

$$e = 2$$

$$e = 2$$

$$bwdsearch(i, j, -2)$$

$$i \longrightarrow j$$

$$v$$

$$e = 2$$

$$bwdsearch(1, l/3, -2)$$

$$bwdsearch(1, (l/3 - 1) \mod (l/3)) + 1, -2)$$

$$Mexcess-suf = 2$$

bwd- $search(i, d \le 0)$

min-excess(i,j)

min-excess(i,j)

Repetitiveness

Maximal Substrings Problem

Find all maximal substrings of S[1, m] that are also substrings of a text T[1, n]

- Solved in O(m) using the suffix tree of T
 - The algorithm maintains two integers i, j representing a substring S[i, j]
 - It uses *child* to advance *j*, when no possible outputs a maximal substring and starts applying *suffix-link* to advance *i* until an application of *child* is possible again

Block Tree definition

A node v, representing v.blk = T[i, i+b-1] can be of three types:

LeafBlock: If $b \leq mll$, where mll is a parameter, then v is a leaf of the Block Tree

BackBlock: Otherwise, if T[i-b, i+b-1] and T[i, i+2b-1] are not their leftmost occurrences in T, then the block is replaced by its leftmost occurrence in T

Internal Block: Otherwise, the block is split into r blocks of size $\left\lceil\frac{b}{r}\right\rceil$ and $\left\lfloor\frac{b}{r}\right\rfloor$

Pruning

Pruning

Bad Instance

Construction Time/Max Space

