Faster Repetition-Aware Compressed Suffix
Trees based on Block Trees

Manuel Céaceres / Gonzalo Navarro
SPIRE

09/09/2019

1/19



Context

Suffix Tr

Compr d Suffi
Repetition-Aware
Block Tree

Introduction

Context

@ The amount of data is in constant growth

1/19



Context

Suffix Tr

Compr d Suffi
Repetition-Aware
Block Tree

Introduction

Context

@ The amount of data is in constant growth

e Complex queries on these data are required

1/19



Context
Suffix

Introduction

Comp s
Repetition-Aware

Block Tree

Context

@ The amount of data is in constant growth

e Complex queries on these data are required

—

1000 Genomes

A Deep Catalog of Human Genetic Variation

The 100,000 conenics B,

Genomes Project by numbers &

1/19



Introduction

Suffix Tree

&

%s'@@@.mms.mm&s

©

2/19



Context

Suffix Tree
Compressed Suffix
Repetition-Aw
Block Tree

Introduction

Space Usage

Suffix Tree: ©(nlogn) bits

3/19



. Conte
Introduction

Block Tree

Space Usage

Suffix Tree: ©(nlogn) bits
e Engineered implementation: ~ 80 bits per symbol (bps)

3/19



. Conte
Introduction

Block Tree

Space Usage

Suffix Tree: ©(nlogn) bits
e Engineered implementation: ~ 80 bits per symbol (bps)
@ A human genome: ~ 7T00M B

3/19



Introduction

Space Usage

Suffix Tree: ©(nlogn) bits
e Engineered implementation: ~ 80 bits per symbol (bps)
@ A human genome: ~ 7T00M B
o Suffix Tree of one genome: ~ 30GB

3/19



Context

Suffix Tree

Introduction

Space Usage

Suffix Tree: ©(nlogn) bits
e Engineered implementation: ~ 80 bits per symbol (bps)
@ A human genome: ~ 7T00M B
o Suffix Tree of one genome: ~ 30GB

1000 Genomes

A Deep Catalog of Human Genetic Variation

~ 30T'B

3/19



Introduction . )
Suffix Tree

Compressed Suffix Tree

Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree

3/19



Introduction

©
Compressed Suffix Tree
Repet n-Aware CSTs

Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

4/19



Context
Suffix Tree
Compressed Suffix Tree

Introduction

Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data

Structures
e Compressed Suffix Array (CSA)

4/19



Introduction

Suffix Tree
n-Aware CSTs

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

o Compressed Suffix Array (CSA)

o Compressed LCP

4/19



Introduction

tion-Aware CSTs
ck Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

o Compressed Suffix Array (CSA)

o Compressed LCP

o Topology representation

4/19



Compressed Suffix Trees are formed by Compact Data
Structures

o Compressed Suffix Array (CSA)

o Compressed LCP

o Topology representation

[COCOOOONOONONOON]

4/19



Conte

Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs

Block Tree

Introduction

Primitives

min_excess(i, j)

excess(i, j) = rank  — rank,
L 1 [ L 1 [
7 J i J
fwdsearch(i, d) bwdsearch(i, d)
e, -
- T
i i

5/19



Range min-Max Tree

rmM-tree =

P= (00O OO0

6/19



Introduction . )
Suffix Tree

Compressed Suffix Tree
Repetition-Aware CSTs

Block Tree

State of the Art

Sadakane ~ 10 bps

~ 107 %sec

C S T Russo, Navarro & Oliveira  ~ 4 bps

~ 10 3sec

Fischer, Makinen & Navarro ~ 8bps

~ 1071sec

7/19



Introduction

State of the Art

Cont

Suffix e

Compressed Suffix Tree
Repetition-Aware C 5

Block Tree

CST

o Still a lot of space

Sadakane ~ 10 bps

~ 107 %sec

Russo, Navarro & Oliveira  ~ 4 bps

~ 10 3sec

Fischer, Makinen & Navarro ~ 8bps
~ 107 1sec

7/19



Cont

Suffix Tree

Compr: d Suffix Tree
Repetition-Aware CST's

Block Tree

Introduction

State of the Art

Sadakane ~ 10 bps
~ 107 %sec

C S T Russo, Navarro & Oliveira  ~ 4 bps

~ 10 3sec

Fischer, Makinen & Navarro ~ 8bps

~ 1071sec

o Still a lot of space
@ Many collections are highly repetitive

7/19



Introduction

©
Compressed Suffix Tree
Repet n-Aware CSTs
Block Tree

State of the Art

Sadakane ~ 10 bps
~ 107 %sec

C S T Russo, Navarro & Oliveira  ~ 4 bps

~ 10 3sec

Fischer, Makinen & Navarro ~ 8bps
~ 107 1sec

o Still a lot of space
@ Many collections are highly repetitive

o BWT-Runs, Lempel-Ziv and Grammar based indexes

7/19



Conte
Suffix Tr
Compr 1 Suffix

Introduction

Repetition-Aware CSTs

Block Tree

Repetition-Aware CST's

7/19



Cont

Introduction
8 ° Suffix Tr

Block Tree

Repetition-Aware CST's

o Abeliuk et. al

8/19



Introduction
Suffix Tree
n-Aware CSTs

Block Tree

Repetition-Aware CST's

o Abeliuk et. al

o Run-length CSA (RLCSA)
e No parentheses topology

8/19



Introduction

Suffix Tree
n-Aware CSTs

Block Tree

Repetition-Aware CST's

o Abeliuk et. al

o Run-length CSA (RLCSA)
e No parentheses topology

Performance

It uses ~ 1 — 2 bps but operates in 1073 sec.

8/19



Introduction
Suffix Tree
Rep Aware CSTs
Block Tree

Repetition-Aware CST's

o Abeliuk et. al

o Run-length CSA (RLCSA)
e No parentheses topology

Performance
It uses ~ 1 — 2 bps but operates in 1073 sec.

o Grammar-Compressed Suffix Tree (GCST)

8/19



Introduction
d Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CST's

o Abeliuk et. al

o Run-length CSA (RLCSA)
e No parentheses topology

Performance
It uses ~ 1 — 2 bps but operates in 1073 sec.

o Grammar-Compressed Suffix Tree (GCST)
o Run-length CSA (RLCSA)
o Topology: Grammar-Compressed Topology (GCT)

8/19



Introduction
d Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CST's

o Abeliuk et. al

o Run-length CSA (RLCSA)
e No parentheses topology

Performance

It uses ~ 1 — 2 bps but operates in 1073 sec.

o Grammar-Compressed Suffix Tree (GCST)
o Run-length CSA (RLCSA)
o Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ~ 2 bps and operates in 107 sec.

8/19



Introduction

Repetition-Aware

Block Tree

Block Tree

8/19



Cont
Suffix Tr
Compr d Suffi

Introduction

Repetition-Aware

Block Tree

Block Tree

o Lempel-Ziv bounded structure

T=|...1 T

9/19



Introduction

Block Tree

Block Tree

o Lempel-Ziv bounded structure

o It divides the text into blocks and uses back pointers to
previous occurrences

T=| |

9/19



Main Idea
Proposal . ati

Main Idea

“Represent the balanced parentheses topology with a Block
Tree and enhance its nodes with excess and min_excess
information to answer the primitives efficiently ”

10/19



Block Tree Compressed
Topology (BT-CT)

10/19



Main Idea
Augmentation

Augmentation

ercess
Min_exrcess

_-— >

11/19



Main Idea

Proposal

Operations

“The basic principle to solve the operations is to compute them
recursively and used the stored fields to skip recursive
computation”

12/19



Main Idea

Proposal Augmentation

fwd-search(i,d < 0)

e—=1 f+1—off
) Je
fwdsearch(i, 1, —1)

11—

I
|
—

[
)6 =-1
fwdsearch(i — | + off, off, —1)

13/19



fwd-search(i,d < 0)

Proposal

Main Idea
mentation

e=25

fwdsearch(i,

U

o0 o0 o0
)e =2 )& =3 )f =0
fwdsearch(i, 1/3,-2) fwdsearch(0,1/3,-2)7  fwdsearch(0,1/3,-2)
mezxcess = -2 mexcess = -3
excess = 1 excess = —3

O(1) time O(1) time

14 /19



Main Idea

BT-CST

15/19



Topology Operations

Results g

Maximal Substrings

Results

15/19



Topology Operations
CSA based

Results : 9 .
esults Maximal Substrings

Results — Topology Operations

einstein, parent influenza, next-sibling

1000

100

u

Time per operation (us)

¢

Time per operation (us)

+
\
1od ‘
.
2

dna0.001, level-ancestor kernel, Ica

1000 10k

1000 t

Time per operati
+
Time per operation (us)

—&— BT-CST —- GCST —+- CST_SCT3 —%— CST_SADA
—— CST_FULLY CST_SCT3_RLCSA CST_SADA_RLCSA

16 /19



Topology Operations
CSA based
M

Results . :
S S mal Substrings

Results — CSA Based Operations

influenza, suffix-link dna0.001, string-depth
10k 10K
. i .
ERL b 2 1009 R
g g .
g " See o g .
g " g
£ S
%% 2 4 6 8 10 % 2 4 6 8 i
kernel, string-ancestor einstein, child
10k R 10k
s
.o H
+ :‘)A 00 H
£
b 2 4 6 8 10 K 2 a 6 8 10
—&— BT-CST —- GCST —+- CST_SCT3 —%— CST_SADA
—— CST_FULLY CST_SCT3_RLCSA CST_SADA_RLCSA

17/19



Operations
d

Results Maximal Substrings

Results — Maximal Subs

influenza, m=2M

1000
5 800
[«7]
G 600
o
1
8 400
&
= 200 +
0 .3
0 2 4 6 8 10 12
—e— BT-CST —— GCST
~#- CST_SADA 4 CST_SCT3

CST_SADA_RLCSA CST_SCT3_RLCSA

18/19



Conclusions/Future
Work

18/19



Conclusions/Future Work

Conclusions/Future Work

o Fastest repetition-aware parenthesis topology

19/19



Conclusions/Future Work

Conclusions/Future Work

o Fastest repetition-aware parenthesis topology

o Fastest repetition-aware compressed suffix tree

19/19



Conclusions/Future Work

Conclusions/Future Work

o Fastest repetition-aware parenthesis topology

o Fastest repetition-aware compressed suffix tree

o Public available code for researchers and practitioners

19/19



Conclusions/Future Work

Conclusions/Future Work

(*]

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

(]

Lack of worst-case time analysis or new algorithms for
primitives

19/19



Conclusions/Future Work

Conclusions/Future Work

(*]

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

(]

Lack of worst-case time analysis or new algorithms for
primitives

e Time improvement on CSA based operations (WCTA’19)

19/19



Conclusions/Future Work

Faster Repetition-Aware Compressed Suffix
Trees based on Block Trees

Manuel Céaceres / Gonzalo Navarro
SPIRE

09/09/2019

19/19



Conclusions/Future Work

bwd-search(i,d < 0)

f + l/3 e = —2
e=2 (
bwdsearch(i, j,-2)
| << i

U

—00

e=2 e= 1k
bwdsearch(1,1/3,-2) bwdsearch(1, ((j — 1) mod (I/3)) +1,-2)

- <
Mezxcess-suf =2

19/19



Conclusions/Future Work

bwd-search(i,d < 0)

00 e=-4
e=0 K (
e ol =5 bwdsearch(1, j, -2)
off SE—

———'e—— <!
: : U

=00
e:ok‘ 6:721
bwdsearch(off + 1,1,-2) bwdsearch(1,j — 1 + off,-2)

O(1) time

19/19



min-excess(

Conclusions/Future Work

i)

e=-2 -3
) } — -2
min-excess(1, j)

: > j

U

-9 -6
e=1 ))e =-2
min-excess(1,1/3) min-excess(1, ((] —1) mod ({/3)) +1
 E— }—)j
mexcess = 2
excess = 3
O(1) time

19/19



Conclusions/Future Work

min-excess(i, j)

e=1 3
j e=4
w.sb-mezcess = -2 min— efL‘C€SS(Z7 l)

u.sb-excess = 2
off . L—>
—> ——>

T u

A

-3 -2

))e =2 ) e=4
min-excess(i + off, | min-excess(1, off)

O(1) time

19/19



Conclusions/Future Work

Repetitiveness

T = abracababracababra$

)

AA= [O][1][5] 7] 9] 7] 7[W0]7][10][7[9]-7]-7][l0]-7[12]-7]-7]
=

AA = (Tl 0T B[ s[5 D[ 2[5 7[5 5B[1]

_—
ALCP = [o0Jo[1]5s][d]2]7[-W0] 7][8[5s][4][2]7[-0]7][-7]2] 7] 19/19
3




Conclusions/Future Work

Maximal Substrings Problem

Find all maximal substrings of S[1,m] that are also substrings
of a text T'[1,n]
e Solved in O(m) using the suffiz tree of T

o The algorithm maintains two integers ¢, j representing a
substring S[i, j]

o It uses child to advance j, when no possible outputs a

maximal substring and starts applying suffiz-link to
advance ¢ until an application of child is possible again

19/19



Conclusions/Future Work

Block Tree definition

A node v, representing v.blk = T'[i,i + b — 1] can be of three
types:
LeafBlock: If b < mll, where mll is a parameter, then v is a
leaf of the Block Tree

BackBlock: Otherwise, if T'[i — b, + b — 1] and T'[i,i + 2b — 1]
are not their leftmost occurrences in 7', then the
block is replaced by its leftmost occurrence in T’

InternalBlock: Otherwise, the block is split into r blocks of size
7] and [ 7]

19/19



Conclusions/Future Work

Pruning

\ 4 s %\ Y

No first
occurrence|

NAA ‘ M NA

19/19




Conclusions/Future Work

Pruning

No first \

OCCLI}'I'GH(‘G

19/19



| [T T
© O —
| ]

19/19



Conclusions/Future Work

Construction Time/Max Spac

influenza, construction time

1000,
~@~ CST_SADA
~l- CST_SCT3
—— BTCST
—a= GCST

£ CST_SADA_RLCSA

E 109 CST_SCT3_RLCSA

o

£

c

=]

=

i

2

B 1

o

v

[
L]
0 5 10 15 20

Maximum construction space (GB)

19/19



	Introduction
	Context
	Suffix Tree
	Compressed Suffix Tree
	Repetition-Aware CSTs
	Block Tree

	Proposal
	Main Idea
	Augmentation
	Operations
	BT-CST

	Results
	Topology Operations
	CSA based
	Maximal Substrings

	Conclusions/Future Work

