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o Lempel-Ziv bounded structure

o It divides the text into blocks and uses back pointers to
previous occurrences
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Tree and enhance its nodes with excess and min_excess
information to answer the primitives efficiently ”
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Lack of worst-case time analysis or new algorithms for
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e Time improvement on CSA based operations (WCTA’19)
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Repetitiveness
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Maximal Substrings Problem

Find all maximal substrings of S[1,m] that are also substrings
of a text T'[1,n]
e Solved in O(m) using the suffiz tree of T

o The algorithm maintains two integers ¢, j representing a
substring S[i, j]

o It uses child to advance j, when no possible outputs a

maximal substring and starts applying suffiz-link to
advance ¢ until an application of child is possible again
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Block Tree definition

A node v, representing v.blk = T'[i,i + b — 1] can be of three
types:
LeafBlock: If b < mll, where mll is a parameter, then v is a
leaf of the Block Tree

BackBlock: Otherwise, if T'[i — b, + b — 1] and T'[i,i + 2b — 1]
are not their leftmost occurrences in 7', then the
block is replaced by its leftmost occurrence in T’

InternalBlock: Otherwise, the block is split into r blocks of size
7] and [ 7]
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