
Introduction
Proposal

Results
Conclusions/Future Work

Faster Repetition-Aware Compressed Suffix
Trees based on Block Trees

Manuel Cáceres / Gonzalo Navarro

SPIRE

09/09/2019

1 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Context

The amount of data is in constant growth

Complex queries on these data are required

1 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Context

The amount of data is in constant growth

Complex queries on these data are required

1 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Context

The amount of data is in constant growth

Complex queries on these data are required

1 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Suffix Tree

2 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

Suffix Tree: Θ(n log n) bits

Engineered implementation: ∼ 80 bits per symbol (bps)

A human genome: ∼ 700MB

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

3 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

Suffix Tree: Θ(n log n) bits

Engineered implementation: ∼ 80 bits per symbol (bps)

A human genome: ∼ 700MB

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

3 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

Suffix Tree: Θ(n log n) bits

Engineered implementation: ∼ 80 bits per symbol (bps)

A human genome: ∼ 700MB

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

3 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

Suffix Tree: Θ(n log n) bits

Engineered implementation: ∼ 80 bits per symbol (bps)

A human genome: ∼ 700MB

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

3 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

Suffix Tree: Θ(n log n) bits

Engineered implementation: ∼ 80 bits per symbol (bps)

A human genome: ∼ 700MB

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

3 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree

3 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP
Topology representation

4 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)

Compressed LCP
Topology representation

4 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP

Topology representation

4 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP
Topology representation

4 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP
Topology representation

4 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Primitives

5 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Range min-Max Tree

6 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

7 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

7 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

7 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

7 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

7 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1 − 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1 − 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1 − 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1 − 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1 − 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1 − 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Block Tree

8 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Block Tree

Lempel-Ziv bounded structure

It divides the text into blocks and uses back pointers to
previous occurrences

9 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Context
Suffix Tree
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Block Tree

Lempel-Ziv bounded structure

It divides the text into blocks and uses back pointers to
previous occurrences

9 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

Main Idea

“Represent the balanced parentheses topology with a Block
Tree and enhance its nodes with excess and min excess

information to answer the primitives efficiently ”

10 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

Block Tree Compressed
Topology (BT-CT)

10 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

Augmentation

11 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

Operations

“The basic principle to solve the operations is to compute them
recursively and used the stored fields to skip recursive

computation”

12 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

fwd-search(i, d ≤ 0)

13 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

fwd-search(i, d ≤ 0)

14 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Main Idea
Augmentation
Operations
BT-CST

BT-CST

15 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Topology Operations
CSA based
Maximal Substrings

Results

15 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Topology Operations
CSA based
Maximal Substrings

Results – Topology Operations

16 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Topology Operations
CSA based
Maximal Substrings

Results – CSA Based Operations

17 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Topology Operations
CSA based
Maximal Substrings

Results – Maximal Substrings

18 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Conclusions/Future
Work

18 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Conclusions/Future Work

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

Lack of worst-case time analysis or new algorithms for
primitives

Time improvement on CSA based operations (WCTA’19)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Conclusions/Future Work

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

Lack of worst-case time analysis or new algorithms for
primitives

Time improvement on CSA based operations (WCTA’19)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Conclusions/Future Work

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

Lack of worst-case time analysis or new algorithms for
primitives

Time improvement on CSA based operations (WCTA’19)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Conclusions/Future Work

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

Lack of worst-case time analysis or new algorithms for
primitives

Time improvement on CSA based operations (WCTA’19)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Conclusions/Future Work

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

Lack of worst-case time analysis or new algorithms for
primitives

Time improvement on CSA based operations (WCTA’19)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Faster Repetition-Aware Compressed Suffix
Trees based on Block Trees

Manuel Cáceres / Gonzalo Navarro

SPIRE

09/09/2019

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

bwd-search(i, d ≤ 0)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

bwd-search(i, d ≤ 0)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

min-excess(i, j)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

min-excess(i, j)

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Repetitiveness

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Maximal Substrings Problem

Find all maximal substrings of S[1,m] that are also substrings
of a text T [1, n]

Solved in O(m) using the suffix tree of T

The algorithm maintains two integers i, j representing a
substring S[i, j]

It uses child to advance j, when no possible outputs a
maximal substring and starts applying suffix-link to
advance i until an application of child is possible again

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Block Tree definition

A node v, representing v.blk = T [i, i + b− 1] can be of three
types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a
leaf of the Block Tree

BackBlock: Otherwise, if T [i− b, i + b− 1] and T [i, i + 2b− 1]
are not their leftmost occurrences in T , then the
block is replaced by its leftmost occurrence in T

InternalBlock: Otherwise, the block is split into r blocks of size⌈
b
r

⌉
and

⌊
b
r

⌋

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Pruning

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Pruning

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Bad Instance

19 / 19



Introduction
Proposal

Results
Conclusions/Future Work

Construction Time/Max Space

19 / 19


	Introduction
	Context
	Suffix Tree
	Compressed Suffix Tree
	Repetition-Aware CSTs
	Block Tree

	Proposal
	Main Idea
	Augmentation
	Operations
	BT-CST

	Results
	Topology Operations
	CSA based
	Maximal Substrings

	Conclusions/Future Work

