Sparsifying, Shrinking and Splicing for Minimum Path Cover in Parameterized Linear Time

Manuel Cáceres, Massimo Cairo, **Brendan Mumey**, Romeo Rizzi and Alexandru I. Tomescu

January 2022, SODA

Problem & Motivation

A minimum-sized set of paths such that every vertex appears in at least one path of the set

A minimum-sized set of paths such that every vertex appears in at least one path of the set

A minimum-sized set of paths such that every vertex appears in at least one path of the set

 \rightarrow Solvable in polynomial time [9, 11]

Applications in various fields

- Bioinformatics
 - Multi-assembly [10, 27, 25, 4, 19]
 - Perfect phylogeny haplotyping [1, 13]
 - Pan-genome alignment [22, 20]

Applications in various fields

- Bioinformatics
 - Multi-assembly [10, 27, 25, 4, 19]
 - Perfect phylogeny haplotyping [1, 13]
 - Pan-genome alignment [22, 20]
- Scheduling [7, 8, 3, 28, 29, 23], computational logic [2, 12], distributed computing [26, 15], databases [16], evolutionary computation [17], program testing [24], cryptography [21], programming languages [18]

Applications in various fields

- Bioinformatics
 - Multi-assembly [10, 27, 25, 4, 19]
 - Perfect phylogeny haplotyping [1, 13]
 - Pan-genome alignment [22, 20]
- Scheduling [7, 8, 3, 28, 29, 23], computational logic [2, 12], distributed computing [26, 15], databases [16], evolutionary computation [17], program testing [24], cryptography [21], programming languages [18]

Previous work

- $O(\sqrt{|V|}|E|)$ [14] \rightarrow transitive DAGs
- $O(|V|^2 + k\sqrt{k}|V|)$ and $O(\sqrt{|V|}|E| + k\sqrt{k}|V|)$ [5, 6]

- $O(\sqrt{|V|}|E|)$ [14] \rightarrow transitive DAGs
- $O(|V|^2+k\sqrt{k}|V|)$ and $O(\sqrt{|V|}|E|+k\sqrt{k}|V|)$ [5, 6]

Reduction to Minimum Flow [24]

 $f(v^{in},v^{out}) \geq d(v^{in},v^{out}) = 1$

- $O(\sqrt{|V|}|E|)$ [14] \rightarrow transitive DAGs
- $O(|V|^2+k\sqrt{k}|V|)$ and $O(\sqrt{|V|}|E|+k\sqrt{k}|V|)$ [5, 6]

Reduction to Minimum Flow [24]

 $f(v^{in},v^{out}) \geq d(v^{in},v^{out}) = 1$

- $O(\sqrt{|V|}|E|)$ [14] \rightarrow transitive DAGs
- $O(|V|^2+k\sqrt{k}|V|)$ and $O(\sqrt{|V|}|E|+k\sqrt{k}|V|)$ [5, 6]

Reduction to Minimum Flow [24]

- $O(\sqrt{|V|}|E|)$ [14] \rightarrow transitive DAGs
- $O(|V|^2 + k\sqrt{k}|V|)$ and $O(\sqrt{|V|}|E| + k\sqrt{k}|V|)$ [5, 6]

Reduction to Minimum Flow [24]

- O(f(G, |V|)): maximum flow on G, capacities $\leq |V|$
- $O(k(|V| + |E|) \log |V|)$ [22]

- $O(\sqrt{|V|}|E|)$ [14] \rightarrow transitive DAGs
- $O(|V|^2 + k\sqrt{k}|V|)$ and $O(\sqrt{|V|}|E| + k\sqrt{k}|V|)$ [5, 6]

Reduction to Minimum Flow [24]

- O(f(G, |V|)): maximum flow on G, capacities $\leq |V|$
- $O(k(|V| + |E|) \log |V|)$ [22]

None of them reaches parameterized linear time

Our results

MPC in parameterized linear time

- A simple D&C algorithm
 - $O(k^2|V|\log|V| + |E|)$
 - $O(k^2|V| + |E|)$ in PRAM
- The first parameterized linear time algorithm
 O(k³|V| + |E|)
- Width sparsification of edges to < 2|V|
 - $\bullet \ O(k^3|V|+|E|)$

MPC in parameterized linear time

- A simple D&C algorithm
 - $O(k^2|V|\log|V| + |E|)$
 - $O(k^2|V| + |E|)$ in PRAM
- The first parameterized linear time algorithm $O(L^3|V| \to |T|)$
 - $O(k^3|V| + |E|)$
- Width sparsification of edges to < 2|V|
 - $\bullet \ O(k^3|V|+|E|)$

 \rightarrow At the core of our solutions we use: Transitive sparsification, shrinking and splicing

A spanning subgraph S preserving the reachability relation between its vertices

A spanning subgraph S preserving the reachability relation between its vertices

 \Rightarrow

- width(S) = width(G)
- Every path cover of S is path cover of G

Inspired by Jagadish's work [16], we propose a transitive sparsification algorithm based on a path cover \mathcal{P} of size t

Observation 2.1

We sparsify the incoming edges of v to $\leq t$ in $O(t + |N^{-}(v)|)$

Inspired by Jagadish's work [16], we propose a transitive sparsification algorithm based on a path cover \mathcal{P} of size t

Observation 2.1

We sparsify the incoming edges of v to $\leq t$ in $O(t + |N^{-}(v)|)$

Inspired by Jagadish's work [16], we propose a transitive sparsification algorithm based on a path cover \mathcal{P} of size t

Observation 2.1

We sparsify the incoming edges of v to $\leq t$ in $O(t + |N^{-}(v)|)$

Shrink a path cover \mathcal{P} of size t in an MPC

Can be solved by using the flow reduction:

- Interpret \mathcal{P} as a flow
- Find $\leq t k$ decrementing paths
- Extract the MPC

Shrink a path cover \mathcal{P} of size t in an MPC

Can be solved by using the flow reduction:

- Interpret \mathcal{P} as a flow
- Find $\leq t k$ decrementing paths
- Extract the MPC

Lemma 2.5

We can obtain an MPC of G in time O(t(|V| + |E|))

 \rightarrow Generalization of approach used by Mäkinen et.al [22]

• Compute a **topological order** of the vertices $v_1, \ldots, v_{|V|}$

- Compute a **topological order** of the vertices $v_1, \ldots, v_{|V|}$
- Run the following **recursive** algorithm. Starting from G, on the subgraph $G_{i,j}[\{v_i, \ldots, v_j\}]$:

- Compute a **topological order** of the vertices $v_1, \ldots, v_{|V|}$
- Run the following **recursive** algorithm. Starting from G, on the subgraph $G_{i,j}[\{v_i, \ldots, v_j\}]$:
 - Solve recursively on $G_{\ell} = (V_{\ell}, E_{\ell})$, induced by $v_i, \ldots, v_{(j-i+1)/2}$. Obtaining a MPC $P_1^{\ell}, \ldots, P_{k_{\ell}}^{\ell}$
 - Solve recursively on $G_r = (V_r, E_r)$, induced by $v_{(j-i+1)/2}, \ldots, v_j$. Obtaining a MPC $P_1^r, \ldots, P_{k_r}^r$

- Compute a **topological order** of the vertices $v_1, \ldots, v_{|V|}$
- Run the following **recursive** algorithm. Starting from G, on the subgraph $G_{i,j}[\{v_i, \ldots, v_j\}]$:
 - Solve recursively on $G_{\ell} = (V_{\ell}, E_{\ell})$, induced by $v_i, \ldots, v_{(j-i+1)/2}$. Obtaining a MPC $P_1^{\ell}, \ldots, P_{k_{\ell}}^{\ell}$
 - Solve recursively on $G_r = (V_r, E_r)$, induced by $v_{(j-i+1)/2}, \ldots, v_j$. Obtaining a MPC $P_1^r, \ldots, P_{k_r}^r$
 - Obtain **sparsification** of $G_{i,j}$ using the path cover $P_1^{\ell}, \ldots, P_{k_\ell}^{\ell}, P_1^r, \ldots, P_{k_r}^r$

- Compute a **topological order** of the vertices $v_1, \ldots, v_{|V|}$
- Run the following **recursive** algorithm. Starting from G, on the subgraph $G_{i,j}[\{v_i, \ldots, v_j\}]$:
 - Solve recursively on $G_{\ell} = (V_{\ell}, E_{\ell})$, induced by $v_i, \ldots, v_{(j-i+1)/2}$. Obtaining a MPC $P_1^{\ell}, \ldots, P_{k_{\ell}}^{\ell}$
 - Solve recursively on $G_r = (V_r, E_r)$, induced by $v_{(j-i+1)/2}, \ldots, v_j$. Obtaining a MPC $P_1^r, \ldots, P_{k_r}^r$
 - Obtain **sparsification** of $G_{i,j}$ using the path cover $P_1^{\ell}, \ldots, P_{k_\ell}^{\ell}, P_1^r, \ldots, P_{k_r}^r$
 - Shrink the path cover solution to P_1, \ldots, P_k

An example - Division

An example - Recursion

An example - Sparsification

An example - Shrinking

Theorem 1.1

We compute an MPC in time $O(k^2|V|\log|V|+|E|)$

Theorem 1.1

We compute an MPC in time $O(k^2|V|\log|V|+|E|)$

Theorem 1.2

We compute an MPC in $O(k^2|V| + |E|)$ parallel steps using $O(\log |V|)$ single processors in the PRAM model

High-level approach:

- Process vertices in topological order $v_1, \ldots, v_{|V|}$
- At each step compute an MPC \mathcal{P}_i of G_i
- In step i + 1 consider the path cover $\mathcal{T}_{i+1} = \mathcal{P}_i \cup \{v_{i+1}\}$, and **shrink** it to \mathcal{P}_{i+1}

High-level approach:

- Process vertices in topological order $v_1, \ldots, v_{|V|}$
- At each step compute an MPC \mathcal{P}_i of G_i
- In step i + 1 consider the path cover $\mathcal{T}_{i+1} = \mathcal{P}_i \cup \{v_{i+1}\}$, and **shrink** it to \mathcal{P}_{i+1}
- \rightarrow We work directly with the *flow reduction* \mathcal{G}_i of G_i , and at each step we look for a *decrementing path* in the residual network $\mathcal{R}(\mathcal{G}_{i+1}, \mathcal{T}_{i+1})$

At step i + 1:

- **()** Sparsify the edges incoming to v_{i+1}^{in} using \mathcal{P}_i
 - Ensures O(k) out-neighbors in $\mathcal{R}(\mathcal{G}_{i+1}, \mathcal{T}_{i+1})$
- **2** Layered traversal of $\mathcal{R}(\mathcal{G}_{i+1}, \mathcal{T}_{i+1})$
- ◎ If a decrementing path D is found, **splice** \mathcal{T}_{i+1} along D to get \mathcal{P}_{i+1} . Otherwise, $\mathcal{P}_{i+1} \leftarrow \mathcal{T}_{i+1}$
- Update level of vertices

We maintain:

- Level assignment ℓ of the vertices of \mathcal{G}_i to $\{0, 1, \ldots, \mathsf{width}(G_i)\}$. Partition of vertices into *layers*
- Invariant A: For each (u, v) in $\mathcal{R}(\mathcal{G}_i, \mathcal{P}_i), \ell(u) \ge \ell(v)$
- Invariants B and C

We maintain:

- Level assignment ℓ of the vertices of \mathcal{G}_i to $\{0, 1, \dots, \mathsf{width}(G_i)\}$. Partition of vertices into *layers*
- Invariant A: For each (u, v) in $\mathcal{R}(\mathcal{G}_i, \mathcal{P}_i), \ell(u) \ge \ell(v)$
- Invariants B and C

Main idea:

BFS in each reachable layer from highest to lowest

- Stop when reaching t
- Only continues to the next highest reachable layer once all reachable vertices from the current layer have been visited

Reconnecting paths in a path cover $\mathcal P$ so that one follows a certain path D

Reconnecting paths in a path cover $\mathcal P$ so that one follows a certain path D

- Requires edges in D covered by \mathcal{P}
- Preserves covering of vertices, size of path cover, and multiplicity of edges

Lemma 2.6

We can obtain, in O(|D|), a path cover \mathcal{P}' of the same size such that $\mu_{\mathcal{P}}(e) = \mu_{\mathcal{P}'}(e)$, and there exists $P \in \mathcal{P}'$ containing D

Splice \mathcal{T}_{i+1} along D

Transform \mathcal{T}_{i+1} into \mathcal{P}_{i+1} in O(|D|)

If l is the smallest layer visited by the traversal, we set:

•
$$\ell(v_{i+1}^{in}) = l, \ \ell(v_{i+1}^{out}) = l+1$$

• For each u visited, $\ell(u) = l$

If l is the smallest layer visited by the traversal, we set:

- $\ell(v_{i+1}^{in}) = l, \ \ell(v_{i+1}^{out}) = l+1$
- For each u visited, $\ell(u) = l$

We show that:

- Invariants are maintained
- A step takes $O(|N^-(v_{i+1})|)$ and O(k) per vertex of level at least l
- Each vertex is charged $O(k^2)$ times during the algorithm

We show that:

- Invariants are maintained
- A step takes $O(|N^-(v_{i+1})|)$ and O(k) per vertex of level at least l
- Each vertex is charged $O(k^2)$ times during the algorithm

Theorem 1.3

We compute an MPC in time $O(k^3|V| + |E|)$

Width sparsification

We show the following result for a path cover of size t

Theorem 1.4

We compute, in $O(t^2|V|)$ time, a path cover $\mathcal{P}', |\mathcal{P}'| = t$, whose number of distinct edges is less than 2|V|

Width sparsification

We show the following result for a path cover of size t

Theorem 1.4

We compute, in $O(t^2|V|)$ time, a path cover $\mathcal{P}', |\mathcal{P}'| = t$, whose number of distinct edges is less than 2|V|

Thus we obtain

Corollary 1.1

We compute a spanning subgraph G' = (V, E') of G with |E'| < 2|V| and width k in time $O(k^3|V| + |E|)$.

Width sparsification

We show the following result for a path cover of size t

Theorem 1.4

We compute, in $O(t^2|V|)$ time, a path cover $\mathcal{P}', |\mathcal{P}'| = t$, whose number of distinct edges is less than 2|V|

Thus we obtain

Corollary 1.1

We compute a spanning subgraph G' = (V, E') of G with |E'| < 2|V| and width k in time $O(k^3|V| + |E|)$.

\rightarrow We also show that the bound 2|V| is asymptotically tight

Funding

European Research Council

Established by the European Commission

[1] BONIZZONI, P.

A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica 48, 3 (2007), 267–285.

- BOVA, S., GANIAN, R., AND SZEIDER, S.
 Model checking existential logic on partially ordered sets. *ACM Transactions on Computational Logic (TOCL)* 17, 2 (2015), 1–35.
- BUNTE, S., AND KLIEWER, N.
 An overview on vehicle scheduling models. Public Transport 1, 4 (2009), 299–317.

References II

- [4] CHANG, Z., LI, G., LIU, J., ZHANG, Y., ASHBY, C., LIU, D., CRAMER, C. L., AND HUANG, X.
 Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. *Genome Biology 16*, 1 (2015), 1–10.
- [5] CHEN, Y., AND CHEN, Y.
 An efficient algorithm for answering graph reachability queries.
 In 2008 IEEE 24th International Conference on Data Engineering (2008), IEEE, pp. 893–902.
- [6] CHEN, Y., AND CHEN, Y.
 On the graph decomposition.
 In 2014 IEEE Fourth International Conference on Big Data and Cloud Computing (2014), IEEE, pp. 777–784.

- [7] COLBOURN, C. J., AND PULLEYBLANK, W. R. Minimizing setups in ordered sets of fixed width. Order 1, 3 (1985), 225–229.
- [8] DESROSIERS, J., DUMAS, Y., SOLOMON, M. M., AND SOUMIS, F.
 Time constrained routing and scheduling. Handbooks in Operations Research and Management Science 8 (1995), 35–139.
- DILWORTH, R. P.
 A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 1 (1950), 161–166.

[10] ERIKSSON, N., PACHTER, L., MITSUYA, Y., RHEE, S.-Y., WANG, C., GHARIZADEH, B., RONAGHI, M., SHAFER, R. W., AND BEERENWINKEL, N.
Viral population estimation using pyrosequencing. *PLoS Computational Biology* 4, 5 (2008), e1000074.

[11] Fulkerson, D. R.

Note on Dilworth's decomposition theorem for partially ordered sets.

Proceedings of the American Mathematical Society 7, 4 (1956), 701–702.

References V

[12] GAJARSKY, J., HLINENY, P., LOKSHTANOV, D., OBDRALEK, J., ORDYNIAK, S., RAMANUJAN, M., AND SAURABH, S.

FO model checking on posets of bounded width.

In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE, pp. 963–974.

[13] GRAMM, J., NIERHOFF, T., SHARAN, R., AND TANTAU, T.

Haplotyping with missing data via perfect path phylogenies.

Discrete Applied Mathematics 155, 6-7 (2007), 788-805.

[14] HOPCROFT, J. E., AND KARP, R. M. An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs.

SIAM Journal on Computing 2, 4 (1973), 225–231.

$\left[15\right]$ IK1Z, S., and Garg, V. K.

Efficient incremental optimal chain partition of distributed program traces.

In 26th IEEE International Conference on Distributed Computing Systems (ICDCS'06) (2006), IEEE, pp. 18–18.

[16] JAGADISH, H. V.

A compression technique to materialize transitive closure. ACM Transactions on Database Systems (TODS) 15, 4 (1990), 558–598.

[17] JAŚKOWSKI, W., AND KRAWIEC, K.

Formal analysis, hardness, and algorithms for extracting internal structure of test-based problems.

Evolutionary Computation 19, 4 (2011), 639–671.

[18] KOWALUK, M., LINGAS, A., AND NOWAK, J.
A path cover technique for LCAs in DAGs.
In Scandinavian Workshop on Algorithm Theory (2008), Springer, pp. 222–233.

[19] LIU, R., AND DICKERSON, J.

Strawberry: Fast and accurate genome-guided transcript reconstruction and quantification from RNA-Seq. *PLoS Computational Biology 13*, 11 (2017), e1005851.

[20] MA, J.

Co-linear Chaining on Graphs With Cycles. Master's thesis, University of Helsinki, Faculty of Science, 2021.

References VIII

[21] MACKINNON, S. J., TAYLOR, P. D., MEIJER, H., AND AKL, S. G.

An optimal algorithm for assigning cryptographic keys to control access in a hierarchy.

IEEE Transactions on Computers 34, 09 (1985), 797–802.

[22] MÄKINEN, V., TOMESCU, A. I., KUOSMANEN, A., PAAVILAINEN, T., GAGIE, T., AND CHIKHI, R. Sparse Dynamic Programming on DAGs with Small Width.

ACM Transactions on Algorithms (TALG) 15, 2 (2019), 1–21.

References IX

- [23] MARCHAL, L., NAGY, H., SIMON, B., AND VIVIEN, F. Parallel scheduling of dags under memory constraints. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2018), IEEE, pp. 204–213.
- [24] NTAFOS, S. C., AND HAKIMI, S. L.
 On path cover problems in digraphs and applications to program testing. *IEEE Transactions on Software Engineering* 5, 5 (1979), 520–529.

[25] RIZZI, R., TOMESCU, A. I., AND MÄKINEN, V. On the complexity of minimum path cover with subpath constraints for multi-assembly. *BMC Bioinformatics* 15, S-9 (2014), S5. [26] TOMLINSON, A. I., AND GARG, V. K. Monitoring functions on global states of distributed programs. Journal of Parallel and Distributed Computing 41, 2

(1997), 173–189.

[27] TRAPNELL, C., WILLIAMS, B. A., PERTEA, G., MORTAZAVI, A., KWAN, G., VAN BAREN, M. J., SALZBERG, S. L., WOLD, B. J., AND PACHTER, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.

Nature Biotechnology 28, 5 (2010), 511.

[28] VAN BEVERN, R., BREDERECK, R., BULTEAU, L., KOMUSIEWICZ, C., TALMON, N., AND WOEGINGER, G. J.

Precedence-constrained scheduling problems parameterized by partial order width.

In International Conference on Discrete Optimization and Operations Research (2016), Springer, pp. 105–120.

[29] ZHAN, X., QIAN, X., AND UKKUSURI, S. V. A graph-based approach to measuring the efficiency of an urban taxi service system. *IEEE Transactions on Intelligent Transportation Systems*

17, 9 (2016), 2479–2489.