Sparsifying, Shrinking and Splicing for

Minimum Path Cover in Parameterized Linear Time

Manuel Céaceres, Massimo Cairo, Brendan Mumey,
Romeo Rizzi and Alexandru I. Tomescu

January 2022, SODA

Problem & Motivation

MPC of a DAG

" ‘\
<%

® .
S

MPC of a DAG

/. o °
~ ‘>.

A minimum-sized set of paths such that every vertex appears in
at least one path of the set

1/19

MPC of a DAG

A minimum-sized set of paths such that every vertex appears in
at least one path of the set

1/19

MPC of a DAG

A minimum-sized set of paths such that every vertex appears in
at least one path of the set

— Solvable in polynomial time [9, 11]

1/19

Motivation

Applications in various fields

o Bioinformatics

o Multi-assembly [10, 27, 25, 4, 19]
o Perfect phylogeny haplotyping [1, 13]
o Pan-genome alignment [22, 20]

2/19

Applications in various fields

o Bioinformatics

o Multi-assembly [10, 27, 25, 4, 19]
o Perfect phylogeny haplotyping [1, 13]
o Pan-genome alignment [22, 20]

e Scheduling [7, 8, 3, 28, 29, 23], computational logic [2, 12],
distributed computing [26, 15], databases [16], evolutionary
computation [17], program testing [24], cryptography [21],
programming languages [18]

2/19

Applications in various fields

o Bioinformatics

o Multi-assembly [10, 27, 25, 4, 19]
o Perfect phylogeny haplotyping [1, 13]
o Pan-genome alignment [22, 20]

e Scheduling [7, 8, 3, 28, 29, 23], computational logic [2, 12],
distributed computing [26, 15], databases [16], evolutionary
computation [17], program testing [24], cryptography [21],
programming languages [18]

—Since the size k of an MPC (width) is small, research has
focused in solutions parameterized by k

2/19

Previous work

MPC algorithms

Reduction to Maximum Matching [11]
o O(\/|V]|E]) [14] — transitive DAGs
o O([V? + kVE|V]) and O(\/[VI|E| + kVE|V]) [5, 6]

3/19

MPC algorithms

Reduction to Maximum Matching [11]
o O(\/|V]|E]) [14] — transitive DAGs
o O([V? + kVE|V]) and O(\/[VI|E| + kVE|V]) [5, 6]

Reduction to Minimum Flow [24]

N
\H. \H. _—
—

f(Ui"',U()ut') > d(’l}i”,’UUUt) =1

3/19

MPC algorithms

Reduction to Maximum Matching [11]
e O(+/|V||E]) [14] — transitive DAGs
o O([V]> + kvVE|V|) and O(\/[V]|E| + kVE[V]) [5, 6]

Reduction to Minimum Flow [24]

o F]*\:.'_ !

f(Uin,UOUt) Z d(vin’vout) =1

3/19

MPC algorithms

Reduction to Maximum Matching [11]
e O(+/|V||E]) [14] — transitive DAGs
o O([V]? + kVE|V]) and O(\/[VI|E| + kVE|V]) [5, 6]

Reduction to Minimum Flow [24]

s

f(vin’vnut) 2 d(vin7vout) =1

3/19

MPC algorithms

Reduction to Maximum Matching [11]
o O(+/|V||E]) [14] — transitive DAGs
o O([V]? + kVE|V]) and O(/[VI[E| + kVE|V]) [5, 6]

Reduction to Minimum Flow [24]

e O(f(G,|V])): maximum flow on G, capacities < |V/|
o O(K(IVI|+ |E[)log [V]) [22]

3/19

MPC algorithms

Reduction to Maximum Matching [11]
o O(+/|V||E]) [14] — transitive DAGs
o O(|V]> +kvVE|V|) and O(\/[V]|E| + kVE|V]) [5, 6]

Reduction to Minimum Flow [24]
e O(f(G,|V])): maximum flow on G, capacities < |V/|
o O(k([V] + |E|)log [V) [22]

None of them reaches parameterized linear time

3/19

Our results

MPC in parameterized linear time

o A simple D&C algorithm
o O(K?|[V]log|V| + |E|)
o O(k?|V|+|E|) in PRAM

o The first parameterized linear time algorithm
o O(K’|V]+ |E])

o Width sparsification of edges to < 2|V|
o O(K*|V]+|E)

4/19

MPC in parameterized linear time

o A simple D&C algorithm
o O(K?|[V]log|V| + |E|)
o O(k?|V|+|E|) in PRAM

o The first parameterized linear time algorithm
o O(K’|V]+ |E])

o Width sparsification of edges to < 2|V|
o O(K*|V]+|E)

—> At the core of our solutions we use:
Transitive sparsification, shrinking and splicing

4/19

Roadmap

Transitive sparsification

Shrinking Parameterized linear time
Splicing Width sparsification

Roadmap

Parameterized linear time
Splicing Width sparsification

Transitive sparsification

A spanning subgraph S preserving the reachability relation

between its vertices

5/19

Transitive sparsification

A spanning subgraph S preserving the reachability relation

between its vertices

=
e width(S) = width(G)
o Every path cover of S is path cover of G

5/19

Transitive sparsification

Inspired by Jagadish’s work [16], we propose a transitive
sparsification algorithm based on a path cover P of size t

Observation 2.1

We sparsify the incoming edges of v to <t in O(t + [N~ (v)|)

6/19

Transitive sparsification

Inspired by Jagadish’s work [16], we propose a transitive
sparsification algorithm based on a path cover P of size ¢

Observation 2.1
We sparsify the incoming edges of v to <t in O(t + [N~ (v)|)

6/19

Transitive sparsification

Inspired by Jagadish’s work [16], we propose a transitive
sparsification algorithm based on a path cover P of size ¢

Observation 2.1
We sparsify the incoming edges of v to <t in O(t + [N~ (v)|)

6/19

Shrinking

Shrink a path cover P of size ¢t in an MPC

Can be solved by using the flow reduction:
o Interpret P as a flow
o Find <t — k decrementing paths
o Extract the MPC

7/19

Shrinking

Shrink a path cover P of size ¢t in an MPC

Can be solved by using the flow reduction:
o Interpret P as a flow
o Find <t — k decrementing paths
o Extract the MPC

We can obtain an MPC of G in time O(t(|V] + |E|))

— Generalization of approach used by Mikinen et.al [22]

7/19

Roadmap

Transitive sparsification -

Shrinking Parameterized linear time
Splicing Width sparsification

D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy

8/19

D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy

o Run the following recursive algorithm. Starting from G,
on the subgraph Gj ;[{vi,...,v;}]:

8/19

D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy

o Run the following recursive algorithm. Starting from G,
on the subgraph Gj ;[{vi,...,v;}]:
o Solve recursively on Gy = (Vp, Ey), induced by
Uiy, U(j—it1)/2- Obtaining a MPC P P,fz

o Solve recursively on G, = (V,., E,.), induced by
v(j—i+l)/2a ceey U5 Obtalmng a MPC P{, ey P]:T

8/19

D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy

o Run the following recursive algorithm. Starting from G,
on the subgraph Gj ;[{vi,...,v;}]:
o Solve recursively on Gy = (Vp, Ey), induced by
Uiy, U(j—it1)/2- Obtaining a MPC P P,fz

o Solve recursively on G, = (V,., E,.), induced by
v(j—i+l)/2a ceey U5 Obtalmng a MPC P{, ey P]:T

o Obtain sparsification of G; ; using the path cover
Pf,...,P{ Pl,.... Pl

8/19

D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy

o Run the following recursive algorithm. Starting from G,
on the subgraph Gj ;[{vi,...,v;}]:
o Solve recursively on Gy = (Vp, Ey), induced by
Uiy, U(j—it1)/2- Obtaining a MPC P P,fz

o Solve recursively on G, = (V,., E,.), induced by
v(j—i+l)/2a ceey U5 Obtalmng a MPC P{, ey P]:T

o Obtain sparsification of G; ; using the path cover
Pf,...,P{ Pl,.... Pl

o Shrink the path cover solution to P, ..., Pk

8/19

An example - Division

An example - Recursion

Gy Py o G, P
. /0&‘
G ‘ o/ ’

An example - Sparsification

° Pe U P,
. / .\.\.
P

An example - Shrinking

D&C algorithm

Theorem 1.1
We compute an MPC in time O(k?|V|log|V| + | E|)

10/19

D&C algorithm

Theorem 1.1
We compute an MPC in time O(k?|V|log|V| + | E|)

Theorem 1.2

We compute an MPC in O(k?|V | + |E|) parallel steps using
O(log |V|) single processors in the PRAM model

10/19

Roadmap

Transitive sparsification

- Width sparsification

Parameterized linear time

High-level approach:
@ Process vertices in topological order vy, ..., vy
o At each step compute an MPC P; of G;

o In step i + 1 consider the path cover 7;11 = P; U {vit1},
and shrink it to P;11

11/19

Parameterized linear time

High-level approach:
@ Process vertices in topological order vy, ..., vy
o At each step compute an MPC P; of G;

o In step i + 1 consider the path cover 7;11 = P; U {vit1},
and shrink it to P;11

— We work directly with the flow reduction G; of G;, and at
each step we look for a decrementing path in the residual
network R(Git1, Tit1)

11/19

Parameterized linear time

At step i + 1:
© Sparsify the edges incoming to vg_’ﬁl using P;
o Ensures O(k) out-neighbors in R(G;+1, Ti+1)

@ Layered traversal of R(G;11, Tit1)

@ If a decrementing path D is found, splice 7,11 along D to
get Piy1. Otherwise, Pir1 Tit+1

@ Update level of vertices

12/19

Layered Traversal

We maintain:

o Level assignment ¢ of the vertices of G; to
{0,1,...,width(G;)}. Partition of vertices into layers

e Invariant A: For each (u,v) in R(G;, P;), £(u) > ¢(v)

o Invariants B and C

13/19

Layered Traversal

We maintain:

o Level assignment ¢ of the vertices of G; to
{0,1,...,width(G;)}. Partition of vertices into layers

e Invariant A: For each (u,v) in R(G;, P;), £(u) > ¢(v)

o Invariants B and C

Main idea:

BE'S in each reachable layer from highest to lowest

@ Stop when reaching ¢

@ Only continues to the next highest reachable layer once all
reachable vertices from the current layer have been visited

13/19

Splicing

Reconnecting paths in a path cover P so that one follows a
certain path D

14 /19

Splicing

Reconnecting paths in a path cover P so that one follows a
certain path D

o Requires edges in D covered by P

o Preserves covering of vertices, size of path cover, and
multiplicity of edges

We can obtain, in O(|D|), a path cover P of the same size such
that up(e) = upi(e), and there exists P € P’ containing D

14 /19

Splice 7;,1 along D

mn out
Vigr Vig1

S t
o
in out
Uit1 Yit1
S t
° °

\/‘/
Transform 7;1; into P41 in O(|D|)

15/19

Level update

If [is the smallest layer visited by the traversal, we set:
° K(vﬁl) =1, E(vfjﬁ) =[+1

e For each u visited, f(u) =1

16 /19

Level update

If [is the smallest layer visited by the traversal, we set:
° f(vﬁl) =1, E(vfjjtl) =[+1

e For each u visited, f(u) =1

16 /19

Parameterized linear time

We show that:
o Invariants are maintained

o A step takes O(|N~ (vi+1)|) and O(k) per vertex of level at
least [

o Each vertex is charged O(k?) times during the algorithm

17/19

Parameterized linear time

We show that:
o Invariants are maintained

o A step takes O(|N~ (vi+1)|) and O(k) per vertex of level at
least [

o Each vertex is charged O(k?) times during the algorithm

Theorem 1.3
We compute an MPC in time O(k3|V | + |E|)

17/19

Roadmap

Transitive sparsification

Shrinking

Splicing

Parameterized linear time

17/19

Width sparsification

We show the following result for a path cover of size t

We compute, in O(t2|V|) time, a path cover P',|P'| =t, whose
number of distinct edges is less than 2|V |

18/19

Width sparsification

We show the following result for a path cover of size t

We compute, in O(t2|V|) time, a path cover P',|P'| =t, whose
number of distinct edges is less than 2|V |

Thus we obtain

We compute a spanning subgraph G' = (V, E') of G with
|E'| < 2|V| and width k in time O(k3|V| + |E|).

18/19

Width sparsification

We show the following result for a path cover of size t

We compute, in O(t2|V|) time, a path cover P',|P'| =t, whose
number of distinct edges is less than 2|V |

Thus we obtain

We compute a spanning subgraph G' = (V, E') of G with
|E'| < 2|V| and width k in time O(k3|V| + |E|).

— We also show that the bound 2|V is asymptotically tight

18/19

Roadmap

Transitive sparsification

Shrinking Parameterized linear time
Splicing Width sparsification

18/19

Funding

European Research Council

Established by the European Commission

19/19

References 1

Bonizzoni, P.

A linear-time algorithm for the perfect phylogeny
haplotype problem.

Algorithmica 48, 3 (2007), 267-285.

Bova, S., GANIAN, R., AND SZEIDER, S.
Model checking existential logic on partially ordered sets.
ACM Transactions on Computational Logic (TOCL) 17, 2

(2015), 1-35.

BunTE, S., AND KLIEWER, N.

An overview on vehicle scheduling models.
Public Transport 1, 4 (2009), 299-317.

19/19

References 11

[4] CHANG, Z., L1, G., Liu, J., ZHANG, Y., AsHBY, C.,
Liu, D., CRAMER, C. L., AND HuANG, X.
Bridger: a new framework for de novo transcriptome
assembly using RNA-seq data.
Genome Biology 16, 1 (2015), 1-10.

[5] CHEN, Y., AND CHEN, Y.
An efficient algorithm for answering graph reachability
queries.
In 2008 IEEE 2jth International Conference on Data
Engineering (2008), IEEE, pp. 893-902.

[6] CHEN, Y., AND CHEN, Y.
On the graph decomposition.
In 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing (2014), IEEE, pp. 777-784.

19/19

References I11

[7]

CoOLBOURN, C. J., AND PULLEYBLANK, W. R.
Minimizing setups in ordered sets of fixed width.
Order 1, 3 (1985), 225-229.

DESROSIERS, J., DumMmAS, Y., SOLOMON, M. M., AND
Souwmis, F.

Time constrained routing and scheduling.

Handbooks in Operations Research and Management

Science 8 (1995), 35-139.

DiwortH, R. P.
A decomposition theorem for partially ordered sets.
Annals of Mathematics 51, 1 (1950), 161-166.

19/19

References IV

[10]

[11]

ErikssoN, N., PACHTER, L., MiTsuvA, Y., RHEE,
S.-Y., WanG, C., GHARIZADEH, B., RONAGHI, M.,
SHAFER, R. W., AND BEERENWINKEL, N.

Viral population estimation using pyrosequencing.
PLoS Computational Biology 4, 5 (2008), €¢1000074.

FULKERSON, D. R.

Note on Dilworth’s decomposition theorem for partially
ordered sets.

Proceedings of the American Mathematical Society 7, 4
(1956), 701-702.

19/19

References V

[12]

[13]

GAJARSKY, J., HLINENY, P., LOKSHTANOV, D.,
OBDRALEK, J., ORDYNIAK, S., RAMANUJAN, M., AND
SAURABH, S.

FO model checking on posets of bounded width.

In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (2015), IEEE, pp. 963-974.

GRrAMM, J., NIERHOFF, T., SHARAN, R., AND TANTAU,
T.

Haplotyping with missing data via perfect path
phylogenies.

Discrete Applied Mathematics 155, 6-7 (2007), 788-805.

Horpcrort, J. E.;, AND KarRP, R. M.

An n®/2 algorithm for maximum matchings in bipartite
graphs.

SIAM Journal on Computing 2, 4 (1973), 225-231.

19/19

References VI

[15]

[17]

Ik1z, S., AND GARG, V. K.

Efficient incremental optimal chain partition of distributed
program traces.

In 26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06) (2006), IEEE, pp. 18-18.

Jacapisa, H. V.

A compression technique to materialize transitive closure.
ACM Transactions on Database Systems (TODS) 15, 4
(1990), 558-598.

JAasSkowsKki, W., AND KrAwWIEC, K.

Formal analysis, hardness, and algorithms for extracting
internal structure of test-based problems.

Evolutionary Computation 19, 4 (2011), 639-671.

19/19

References VII

[18]

[20]

KowaALUKk, M., LINGASs, A., AND NowaAKk, J.
A path cover technique for LCAs in DAGs.
In Scandinavian Workshop on Algorithm Theory (2008),

Springer, pp. 222-233.

Liu, R., AND DICKERSON, J.

Strawberry: Fast and accurate genome-guided transcript
reconstruction and quantification from RNA-Seq.

PLoS Computational Biology 13, 11 (2017), e1005851.

Ma, J.

Co-linear Chaining on Graphs With Cycles.

Master’s thesis, University of Helsinki, Faculty of Science,
2021.

19/19

References VIII

[21]

[22]

MACKINNON, S. J., TAYLOR, P. D., MEIJER, H., AND

AxkL, S. G.

An optimal algorithm for assigning cryptographic keys to
control access in a hierarchy.

IEEFE Transactions on Computers 34, 09 (1985), 797-802.

MAKINEN, V., ToMmEscU, A. I., KUOSMANEN, A.,
PAAVILAINEN, T., GAGIE, T., AND CHIKHI, R.

Sparse Dynamic Programming on DAGs with Small
Width.

ACM Transactions on Algorithms (TALG) 15, 2 (2019),
1-21.

19/19

References IX

[23]

[24]

MARrcHAL, L., NAcy, H., SiMON, B., AND VIVIEN, F.
Parallel scheduling of dags under memory constraints.
In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (2018), IEEE,

pp. 204-213.

NTAros, S. C., AND HAkIMI, S. L.

On path cover problems in digraphs and applications to
program testing.

IEEE Transactions on Software Engineering 5, 5 (1979),
520-529.

Rizzi, R., ToMEscuU, A. I., AND MAKINEN, V.

On the complexity of minimum path cover with subpath

constraints for multi-assembly.
BMC' Bioinformatics 15, S-9 (2014), S5.

19/19

References X

[26]

[27]

ToMLINSON, A. I., AND GARG, V. K.

Monitoring functions on global states of distributed
programs.

Journal of Parallel and Distributed Computing 41, 2
(1997), 173-189.

TRAPNELL, C., WILLIAMS, B. A., PERTEA, G.,
MoRrTAZAVI, A., KWAN, G., VAN BAREN, M. J.,
SALZBERG, S. L., WoLD, B. J., AND PACHTER, L.
Transcript assembly and quantification by RNA-Seq
reveals unannotated transcripts and isoform switching
during cell differentiation.

Nature Biotechnology 28, 5 (2010), 511.

19/19

References XI

[28]

VAN BEVERN, R., BREDERECK, R., BULTEAU, L.,
Komusiewicz, C., TALMON, N., AND WOEGINGER,

G. J.

Precedence-constrained scheduling problems parameterized
by partial order width.

In International Conference on Discrete Optimization and
Operations Research (2016), Springer, pp. 105-120.

ZHAN, X., QIAN, X., AND UKKUSURI, S. V.

A graph-based approach to measuring the efficiency of an
urban taxi service system.

IEEE Transactions on Intelligent Transportation Systems
17,9 (2016), 2479-2489.

19/19

