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MPC of a DAG

A minimum-sized set of paths such that every vertex appears in
at least one path of the set

— Solvable in polynomial time [9, 11]
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Motivation

Applications in various fields

o Bioinformatics

o Multi-assembly [10, 27, 25, 4, 19]
o Perfect phylogeny haplotyping [1, 13]
o Pan-genome alignment [22, 20]
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Applications in various fields

o Bioinformatics

o Multi-assembly [10, 27, 25, 4, 19]
o Perfect phylogeny haplotyping [1, 13]
o Pan-genome alignment [22, 20]

e Scheduling [7, 8, 3, 28, 29, 23], computational logic [2, 12],
distributed computing [26, 15], databases [16], evolutionary
computation [17], program testing [24], cryptography [21],
programming languages [18]

—Since the size k of an MPC (width) is small, research has
focused in solutions parameterized by k
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Previous work



MPC algorithms

Reduction to Maximum Matching [11]
o O(\/|V]|E]) [14] — transitive DAGs
o O([V? + kVE|V]) and O(\/[VI|E| + kVE|V]) [5, 6]
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MPC algorithms

Reduction to Maximum Matching [11]
o O(+/|V||E]) [14] — transitive DAGs
o O(|V]> +kvVE|V|) and O(\/[V]|E| + kVE|V]) [5, 6]

Reduction to Minimum Flow [24]
e O(f(G,|V])): maximum flow on G, capacities < |V/|
o O(k([V] + |E|)log [V) [22]

None of them reaches parameterized linear time
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Our results



MPC in parameterized linear time

o A simple D&C algorithm
o O(K?|[V]log|V| + |E|)
o O(k?|V|+|E|) in PRAM

o The first parameterized linear time algorithm
o O(K’|V]+ |E])

o Width sparsification of edges to < 2|V|
o O(K*|V]+|E)
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MPC in parameterized linear time

o A simple D&C algorithm
o O(K?|[V]log|V| + |E|)
o O(k?|V|+|E|) in PRAM

o The first parameterized linear time algorithm
o O(K’|V]+ |E])

o Width sparsification of edges to < 2|V|
o O(K*|V]+|E)

—> At the core of our solutions we use:
Transitive sparsification, shrinking and splicing
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Transitive sparsification

A spanning subgraph S preserving the reachability relation

between its vertices
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Transitive sparsification

A spanning subgraph S preserving the reachability relation

between its vertices

=
e width(S) = width(G)
o Every path cover of S is path cover of G
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Transitive sparsification

Inspired by Jagadish’s work [16], we propose a transitive
sparsification algorithm based on a path cover P of size t

Observation 2.1

We sparsify the incoming edges of v to <t in O(t + [N~ (v)|)
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Shrinking

Shrink a path cover P of size ¢t in an MPC

Can be solved by using the flow reduction:
o Interpret P as a flow
o Find <t — k decrementing paths
o Extract the MPC
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Shrinking

Shrink a path cover P of size ¢t in an MPC

Can be solved by using the flow reduction:
o Interpret P as a flow
o Find <t — k decrementing paths
o Extract the MPC

We can obtain an MPC of G in time O(t(|V] + |E|))

— Generalization of approach used by Mikinen et.al [22]
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D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy
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D&C Algorithm

e Compute a topological order of the vertices v1, ..., vy

o Run the following recursive algorithm. Starting from G,
on the subgraph Gj ;[{vi,...,v;}]:
o Solve recursively on Gy = (Vp, Ey), induced by
Uiy, U(j—it1)/2- Obtaining a MPC P P,fz

o Solve recursively on G, = (V,., E,.), induced by
v(j—i+l)/2a ceey U5 Obtalmng a MPC P{, ey P]:T

o Obtain sparsification of G; ; using the path cover
Pf,...,P{ Pl,.... Pl

o Shrink the path cover solution to P, ..., Pk
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An example - Division




An example - Recursion
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An example - Sparsification
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An example - Shrinking




D&C algorithm

Theorem 1.1
We compute an MPC in time O(k?|V|log|V| + | E|)
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D&C algorithm

Theorem 1.1
We compute an MPC in time O(k?|V|log|V| + | E|)

Theorem 1.2

We compute an MPC in O(k?|V | + |E|) parallel steps using
O(log |V|) single processors in the PRAM model
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Parameterized linear time

High-level approach:
@ Process vertices in topological order vy, ..., vy
o At each step compute an MPC P; of G;

o In step i + 1 consider the path cover 7;11 = P; U {vit1},
and shrink it to P;11
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Parameterized linear time

High-level approach:
@ Process vertices in topological order vy, ..., vy
o At each step compute an MPC P; of G;

o In step i + 1 consider the path cover 7;11 = P; U {vit1},
and shrink it to P;11

— We work directly with the flow reduction G; of G;, and at
each step we look for a decrementing path in the residual
network R(Git1, Tit1)
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Parameterized linear time

At step i + 1:
© Sparsify the edges incoming to vg_’ﬁl using P;
o Ensures O(k) out-neighbors in R(G;+1, Ti+1)

@ Layered traversal of R(G;11, Tit1)

@ If a decrementing path D is found, splice 7,11 along D to
get Piy1. Otherwise, Pir1  Tit+1

@ Update level of vertices
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Layered Traversal

We maintain:

o Level assignment ¢ of the vertices of G; to
{0,1,...,width(G;)}. Partition of vertices into layers

e Invariant A: For each (u,v) in R(G;, P;), £(u) > ¢(v)

o Invariants B and C
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Layered Traversal

We maintain:

o Level assignment ¢ of the vertices of G; to
{0,1,...,width(G;)}. Partition of vertices into layers

e Invariant A: For each (u,v) in R(G;, P;), £(u) > ¢(v)

o Invariants B and C

Main idea:

BE'S in each reachable layer from highest to lowest

@ Stop when reaching ¢

@ Only continues to the next highest reachable layer once all
reachable vertices from the current layer have been visited
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Splicing

Reconnecting paths in a path cover P so that one follows a
certain path D
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Splicing

Reconnecting paths in a path cover P so that one follows a
certain path D

o Requires edges in D covered by P

o Preserves covering of vertices, size of path cover, and
multiplicity of edges

We can obtain, in O(|D|), a path cover P of the same size such
that up(e) = upi(e), and there exists P € P’ containing D
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Splice 7;,1 along D

mn out
Vigr Vig1

S t
o
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Transform 7;1; into P41 in O(|D|)
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Level update

If [ is the smallest layer visited by the traversal, we set:
° K(vﬁl) =1, E(vfjﬁ) =[+1

e For each u visited, f(u) =1
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Level update
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Parameterized linear time

We show that:
o Invariants are maintained

o A step takes O(|N~ (vi+1)|) and O(k) per vertex of level at
least [

o Each vertex is charged O(k?) times during the algorithm
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Parameterized linear time

We show that:
o Invariants are maintained

o A step takes O(|N~ (vi+1)|) and O(k) per vertex of level at
least [

o Each vertex is charged O(k?) times during the algorithm

Theorem 1.3
We compute an MPC in time O(k3|V | + |E|)
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Roadmap

Transitive sparsification

Shrinking

Splicing

Parameterized linear time
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Width sparsification

We show the following result for a path cover of size t

We compute, in O(t2|V|) time, a path cover P',|P'| =t, whose
number of distinct edges is less than 2|V |
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Width sparsification

We show the following result for a path cover of size t

We compute, in O(t2|V|) time, a path cover P',|P'| =t, whose
number of distinct edges is less than 2|V |

Thus we obtain

We compute a spanning subgraph G' = (V, E') of G with
|E'| < 2|V| and width k in time O(k3|V| + |E|).
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Width sparsification

We show the following result for a path cover of size t

We compute, in O(t2|V|) time, a path cover P',|P'| =t, whose
number of distinct edges is less than 2|V |

Thus we obtain

We compute a spanning subgraph G' = (V, E') of G with
|E'| < 2|V| and width k in time O(k3|V| + |E|).

— We also show that the bound 2|V is asymptotically tight
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