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Lucia Williams and Alexandru I. Tomescu

May 2022, RECOMB



Problem & Motivation



Flow decomposition (FD)

Given

A directed acyclic graph (DAG) G = (V ,E )

An st-flow f on E

, that is:

∀v ∈ V \ {s, t},
∑

(u,v)∈E

f (u, v) = fin(v) = fout =
∑

(v ,w)∈E

f (v ,w)
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Flow decomposition (FD)

Given

A DAG G = (V ,E ), and an st-flow f on E

Report

A set of st-paths P1, . . . ,Pk , and associated weights
w1, . . . ,wk

decomposing f ,

that is

∀e ∈ E , f (e) =
∑
i ,e∈Pi

wi
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Applications of FD

Network routing [13, 8, 12, 23]

Transportation [24, 25]

Reconstruction of biological sequences: Multi-assembly
RNA transcript assembly [27, 33, 10, 6, 32, 37]
Viral quasi-species [3, 2]

The flow represents a mixed sample of genomic
sequences with different abundances.

⇒ A decomposition of that flow tells the different
sequences (and their abundances) apart.
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Multi-assembly?

The solution is ...

A path cover [34, 19] (only considers DAG topology)

Some FD

Solvable in O(m(n + m)) [1] (m = |E |, n = |V |)
Minimize number of paths (MFD)

NP-hard [35], approximations [12, 31, 29, 23, 4, 5], FPT [17],
ILP [9], heuristics [33, 27, 30, 17]
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Multiple solutions!

Even in MFD [38]

Which is the correct solution?
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The Safe Approach
Only report sub-solutions common to all solutions



Safe algorithms

Unitigs [15] in O(n + m)

ExtUnitigs [28, 22, 14, 16] in O(n + m)

Safe for covers [7] in O(k2nm) (k = min. size cover/decomp.)

Are these complete?
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... the flow?

The previous approaches ignore the flow...

One unit of flow must traverse the path on any decomposition

Can we be Safe&Complete?
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AND-Quant

Recently Ma et al. [20, 21] proposed a method to answer whether
any set of edges is safe for FD.

Quadratic algorithm

Based on a global criterion

7 / 19



Our results



Our results

We...

propose a simple and local characterization of safe paths

...leading to

a linear algorithm to answer if a path is safe
a quadratic Safe&Complete algorithm

empirically show the advantages of Safe&Complete paths in
RNA transcript assembly
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Theoretical results



Safe paths

Definition (Safe path)

A path P is safe if and only if for every decomposition P1, . . . ,Pk ,
P is subpath of some Pi
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Excess flow

Definition (Excess flow - diverging)

The excess flow fP of a path P = u1, . . . , uk is

fP = f (u1, u2)−
∑

ui∈{u2,...,uk−1}
v 6=ui+1

f (ui , v)
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Excess flow

Definition (Excess flow - converging)

The excess flow fP of a path P = u1, . . . , uk is

fP = f (uk−1, uk)−
∑

ui∈{u2,...,uk−1}
v 6=ui−1

f (v , ui )
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Excess flow – Example

fP = 7− 3− 3 = 6− 5 = 1
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Excess flow – Efficient

Lemma

Let P = u1, . . . , uk be a path and pP = u1, . . . , uk−1,
sP = u2, . . . , uk , then

fP = fpP + fout(u2)− f (u1, u2) = fin(uk−1)− f (uk−1, uk)

By precomputing fin = fout we obtain

Lemma

We can preprocess G in O(n + m) to compute fP in O(|P|)
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Characterization

Theorem

A path P is safe iff its excess flow fP > 0

therefore

Theorem

We can preprocess G in O(n + m) to decide if P is safe in O(|P|)

13 / 19



Characterization

Theorem

A path P is safe iff its excess flow fP > 0

therefore

Theorem

We can preprocess G in O(n + m) to decide if P is safe in O(|P|)

13 / 19



Safe&Complete algorithm

1 Precompute the fin = fout values, and a flow decomposition
P1, . . . ,Pk

2 For every path Pi run a two-pointer algorithm computing the
excess flow of subpaths, and reporting maximal safe paths

14 / 19



Practical results
RNA transcript assembly



Datasets

Catfish [30]

100 simulated transcriptomes for human, mouse, and zebrafish
using Flux-Simulator [11]
1000 experiments from the Sequence Read Archive, with
simulated abundances for transcripts using Salmon [26]
Small number of complex instances (large k)

Reference-Sim [36]

For each transcript in the GRCh.104 homo sapiens reference
genome, it samples a value from a lognormal distribution using
RNASeqReadSimulator [18]
Larger number of complex instances
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Evaluation metrics

Weighted precision: Total length of correctly reported paths
divided by the total length of reported paths.

Maximum relative coverage: Length of the longest segment of a
reported path inside a transcript T , divided by |T |

F-score: Harmonic mean of weighted precision and maximum
relative coverage
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Results – Catfish

(a) Weighted Precision (b) Max. Rel. Coverage (c) F-Score
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Results – Reference-Sim

(a) Weighted Precision (b) Max. Rel. Coverage (c) F-Score
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Results – Performance

Algorithm

Reference-Sim Catfish
Human Zebrafish Human (salmon)
25.6MB 122MB 2.5GB

Time Mem Time Mem Time Mem

Unitigs 0.68s 3.58MB 13.82s 3.51MB 303.72s 3.66MB
ExtUnitigs 0.99s 3.63MB 18.31s 3.52MB 404.50s 3.68MB

Safe&Comp 2.56s 4.47MB 20.17s 3.56MB 667.27s 3.84MB
Greedy 7.71s 4.88MB 108.30s 6.00MB 2684.30s 8.47MB
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