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Maximal Substrings Problem

Find all maximal substrings of S[1,m] that are also substrings
of a text T [1, n]

Solved in O(m) using the suffix tree of T

The algorithm maintains two integers i, j representing a
substring S[i, j]

It uses child to advance j, when no possible outputs a
maximal substring and starts applying suffix-link to
advance i until an application of child is possible again

42 / 42



Introduction
Work

Conclusions

Real Pruning

To avoid dependency issues we need to eliminate these
expansions in a postorder right-to-left traversal of the Block
Tree. Moreover, when analyzing a block, it is enough to check if
its children are all leaves, because if they were unnecessary
expansions they would have been already processed in the
traversal and turned into BackBlocks.
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Theoretical Work on Block Trees

At each level l (where the root is at level 0) the blocks are
of lengths either

⌈
n
rl

⌉
or
⌊
n
rl

⌋
Block Trees are well defined, that is, BackBlocks point to a
well-defined block or pair of blocks in the same level,
containing its leftmost occurrence. Even more, this block
or pair of blocks are InternalBlocks

The Block Tree can be implemented using O (zrhbt log n)
bits of space

Pruning as alternative definition
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Real Block Tree definition

A node v, representing v.blk = T [i, i + b− 1] can be of three
types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a
leaf of the Block Tree

BackBlock: Otherwise, if T [i− b, i + b− 1] and T [i, i + 2b− 1]
are not their leftmost occurrences in T , then the
block is replaced by its leftmost occurrence in T

InternalBlock: Otherwise, the block is split into r blocks of size⌈
b
r

⌉
and

⌊
b
r

⌋
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Primitive Parentheses Operations

– excess(i) = rank((i)− rank)(i)

– leaf-rank(i) = rank()(i) = | {1 ≤ j ≤ i− 1 | P [j] = ( ∧ P [j + 1] = )} |
– leaf-select(j) = select()(j) = min({i | leaf-rank(i+ 1) = j} ∪ {∞})
– fwd-search(i, d) = min({j > i | excess(j) = excess(i) + d)} ∪ {∞})
– bwd-search(i, d) = max({j < i | excess(j) = excess(i) + d)} ∪ {−∞})
– min-excess(i, j) = min({excess(k)− excess(i− 1) | i ≤ k ≤ j} ∪ {∞})

Some reductions

tree-depth(v) = excess(v)

next-sibling(v) = fwd-search(v,−1) + 1
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Block Tree Improvements

Introduced in “Queries on LZ-Bounded Encodings”
(QLZBE)

We proved properties stated in the publication

Implemented by Ordoñez

Differs from theoretical proposal

Does not ensure the Lempel-Ziv bound

We implemented Block Trees following the theoretical
proposal

A lot of new versions (not LZ bounded) emerge while
working on the paper version

block tree, block tree no clean, pruning c block tree,
heuristic block tree, heuristic concatenate block tree,
liberal heuristic block tree,
conservative heuristic block tree, back front block tree,
among others
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