
Introduction
Work

Conclusions

Compressed Suffix Trees for Repetitive
Collections based on Block Trees

Manuel Cáceres

CLEI 2020, CLTM

20/10/2020

1 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Context

The amount of data is in constant growth

Complex queries on these data are required

1 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Context

The amount of data is in constant growth

Complex queries on these data are required

1 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Context

The amount of data is in constant growth

Complex queries on these data are required

1 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Suffix Tree

2 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Applications in Stringology/Bioinfomatics

Approximate pattern matching

Longest common substring

Finding maximal repeats

Computing matching statistics

3 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Applications in Stringology/Bioinfomatics

Approximate pattern matching

Longest common substring

Finding maximal repeats

Computing matching statistics

3 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Applications in Stringology/Bioinfomatics

Approximate pattern matching

Longest common substring

Finding maximal repeats

Computing matching statistics

3 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Applications in Stringology/Bioinfomatics

Approximate pattern matching

Longest common substring

Finding maximal repeats

Computing matching statistics

3 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Applications in Stringology/Bioinfomatics

Approximate pattern matching

Longest common substring

Finding maximal repeats

Computing matching statistics

3 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

A human genome: ∼ 700MB

Suffix Tree: Θ(n log n) bits
Engineered implementation: ∼ 80 bits per symbol (bps)

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

4 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

A human genome: ∼ 700MB

Suffix Tree: Θ(n log n) bits

Engineered implementation: ∼ 80 bits per symbol (bps)

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

4 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

A human genome: ∼ 700MB

Suffix Tree: Θ(n log n) bits
Engineered implementation: ∼ 80 bits per symbol (bps)

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

4 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

A human genome: ∼ 700MB

Suffix Tree: Θ(n log n) bits
Engineered implementation: ∼ 80 bits per symbol (bps)

Suffix Tree of one genome: ∼ 30GB

∼ 30TB

4 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Space Usage

A human genome: ∼ 700MB

Suffix Tree: Θ(n log n) bits
Engineered implementation: ∼ 80 bits per symbol (bps)

Suffix Tree of one genome: ∼ 30GB

∼ 30TB
4 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree

5 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP
Topology representation

6 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)

Compressed LCP
Topology representation

6 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP

Topology representation

6 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP
Topology representation

6 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Compressed Suffix Tree (CST)

Compressed Suffix Trees are formed by Compact Data
Structures

Compressed Suffix Array (CSA)
Compressed LCP
Topology representation

6 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Range min-Max Tree

7 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

8 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

8 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

8 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

State of the Art

Still a lot of space

Many collections are highly repetitive

BWT-Runs, Lempel-Ziv and Grammar based indexes

8 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

9 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)

No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)

Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Repetition-Aware CSTs

Abeliuk et. al

Run-length CSA (RLCSA)
No parentheses topology

Performance

It uses ∼ 1− 2 bps but operates in 10−3 sec.

Grammar-Compressed Suffix Tree (GCST)

Run-length CSA (RLCSA)
Topology: Grammar-Compressed Topology (GCT)

Performance

It uses ∼ 2 bps and operates in 10−5 sec.

10 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Block Tree

11 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Block Tree

Lempel-Ziv bounded structure

It divides the text into blocks and uses back pointers to
previous occurrences

12 / 42

Introduction
Work

Conclusions

Context
Suffix Tree
Suffix Tree Applications
Compressed Suffix Tree
Repetition-Aware CSTs
Block Tree

Block Tree

Lempel-Ziv bounded structure

It divides the text into blocks and uses back pointers to
previous occurrences

12 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Work Done

13 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Work Done

14 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Work Done

15 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Work Done

16 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Work Done

17 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Block Tree Improvements

18 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – Compared to State-of-the-art

19 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Compressed Topologies

20 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Compressed Topologies

Block Tree Compressed Topology (BT-CT)

Augmentation of Block Tree nodes with leaf-rank, excess
and min-excess fields

Implementation of Primitives Parentheses Operations
– excess(i)
– leaf-rank(i)
– leaf-select(j)
– fwd-search(i, d)
– bwd-search(i, d)
– min-excess(i, j)

21 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Compressed Topologies

Block Tree Compressed Topology (BT-CT)

Augmentation of Block Tree nodes with leaf-rank, excess
and min-excess fields

Implementation of Primitives Parentheses Operations
– excess(i)
– leaf-rank(i)
– leaf-select(j)
– fwd-search(i, d)
– bwd-search(i, d)
– min-excess(i, j)

21 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – tree-depth

22 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – next-sibling

23 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – level-ancestor

24 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – lca

25 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

26 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

Store the differences A[i]−A[i− 1], and a sampling

A[i] = A[s] +
∑i

j=s+1A[j]−A[j − 1]

Differential encodings of the suffix array A, its inverse A−1

and the LCP inherits the repetitiveness from its input

We adapted Block Trees and Grammar structures

Similar to rank
Replace rank fields by partial sums of differences

27 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

Store the differences A[i]−A[i− 1], and a sampling

A[i] = A[s] +
∑i

j=s+1A[j]−A[j − 1]

Differential encodings of the suffix array A, its inverse A−1

and the LCP inherits the repetitiveness from its input

We adapted Block Trees and Grammar structures

Similar to rank
Replace rank fields by partial sums of differences

27 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

Store the differences A[i]−A[i− 1], and a sampling

A[i] = A[s] +
∑i

j=s+1A[j]−A[j − 1]

Differential encodings of the suffix array A, its inverse A−1

and the LCP inherits the repetitiveness from its input

We adapted Block Trees and Grammar structures

Similar to rank
Replace rank fields by partial sums of differences

27 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

Store the differences A[i]−A[i− 1], and a sampling

A[i] = A[s] +
∑i

j=s+1A[j]−A[j − 1]

Differential encodings of the suffix array A, its inverse A−1

and the LCP inherits the repetitiveness from its input

We adapted Block Trees and Grammar structures

Similar to rank
Replace rank fields by partial sums of differences

27 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

Analogous adaptation of Grammar GCC structure

New variant and Augmentation of Locally Compressed
Suffix Array (LCSA)

LCSA-c-sampling
LCSA-lengths

28 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Differential Arrays

Analogous adaptation of Grammar GCC structure

New variant and Augmentation of Locally Compressed
Suffix Array (LCSA)

LCSA-c-sampling
LCSA-lengths

28 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – A

29 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – A−1

30 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – LCP

31 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

New CSTs

32 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

New CSTs

33 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

New CSTs

BT-CST-{LCSA, NONE}-{LCSA, DABT, NONE}

34 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – suffix-link

35 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – string-depth

36 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – string-ancestor

37 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – child

38 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – child

39 / 42

Introduction
Work

Conclusions

Work Done
Block Tree Improvements
Compressed Topologies
Differential Arrays
New CSTs

Results – Maximal Substrings

40 / 42

Introduction
Work

Conclusions

Conclusions

41 / 42

Introduction
Work

Conclusions

Conclusions

Practical and theoretical enrichment of Block Trees

New structures for repetitive differential encodings

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

42 / 42

Introduction
Work

Conclusions

Conclusions

Practical and theoretical enrichment of Block Trees

New structures for repetitive differential encodings

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

42 / 42

Introduction
Work

Conclusions

Conclusions

Practical and theoretical enrichment of Block Trees

New structures for repetitive differential encodings

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

42 / 42

Introduction
Work

Conclusions

Conclusions

Practical and theoretical enrichment of Block Trees

New structures for repetitive differential encodings

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

42 / 42

Introduction
Work

Conclusions

Conclusions

Practical and theoretical enrichment of Block Trees

New structures for repetitive differential encodings

Fastest repetition-aware parenthesis topology

Fastest repetition-aware compressed suffix tree

Public available code for researchers and practitioners

42 / 42

Introduction
Work

Conclusions

Compressed Suffix Trees for Repetitive
Collections based on Block Trees

Manuel Cáceres

CLEI 2020, CLTM

20/10/2020

42 / 42

Introduction
Work

Conclusions

Other heuristic improvements

Padding versus No Padding

Compressed components versus Plain components

42 / 42

Introduction
Work

Conclusions

Results – Padding

42 / 42

Introduction
Work

Conclusions

Results – Compressed Components

42 / 42

Introduction
Work

Conclusions

bwd-search(i, d ≤ 0)

42 / 42

Introduction
Work

Conclusions

bwd-search(i, d ≤ 0)

42 / 42

Introduction
Work

Conclusions

min-excess(i, j)

42 / 42

Introduction
Work

Conclusions

min-excess(i, j)

42 / 42

Introduction
Work

Conclusions

Results – first-child

42 / 42

Introduction
Work

Conclusions

Results – parent

42 / 42

Introduction
Work

Conclusions

Results – A

42 / 42

Introduction
Work

Conclusions

Results – A−1

42 / 42

Introduction
Work

Conclusions

Results – LCP

42 / 42

Introduction
Work

Conclusions

Repetitiveness

42 / 42

Introduction
Work

Conclusions

Maximal Substrings Problem

Find all maximal substrings of S[1,m] that are also substrings
of a text T [1, n]

Solved in O(m) using the suffix tree of T

The algorithm maintains two integers i, j representing a
substring S[i, j]

It uses child to advance j, when no possible outputs a
maximal substring and starts applying suffix-link to
advance i until an application of child is possible again

42 / 42

Introduction
Work

Conclusions

Real Pruning

To avoid dependency issues we need to eliminate these
expansions in a postorder right-to-left traversal of the Block
Tree. Moreover, when analyzing a block, it is enough to check if
its children are all leaves, because if they were unnecessary
expansions they would have been already processed in the
traversal and turned into BackBlocks.

42 / 42

Introduction
Work

Conclusions

Theoretical Work on Block Trees

At each level l (where the root is at level 0) the blocks are
of lengths either

⌈
n
rl

⌉
or
⌊
n
rl

⌋
Block Trees are well defined, that is, BackBlocks point to a
well-defined block or pair of blocks in the same level,
containing its leftmost occurrence. Even more, this block
or pair of blocks are InternalBlocks

The Block Tree can be implemented using O (zrhbt log n)
bits of space

Pruning as alternative definition

42 / 42

Introduction
Work

Conclusions

Real Block Tree definition

A node v, representing v.blk = T [i, i + b− 1] can be of three
types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a
leaf of the Block Tree

BackBlock: Otherwise, if T [i− b, i + b− 1] and T [i, i + 2b− 1]
are not their leftmost occurrences in T , then the
block is replaced by its leftmost occurrence in T

InternalBlock: Otherwise, the block is split into r blocks of size⌈
b
r

⌉
and

⌊
b
r

⌋

42 / 42

Introduction
Work

Conclusions

Secondary Memory

42 / 42

Introduction
Work

Conclusions

Suffix Array (SA)

→ 48 bps

Longest Common Prefix (LCP)

LCP [i] = lcp (T [SA[i− 1 . . . n], T [SA[i . . . n])

42 / 42

Introduction
Work

Conclusions

Suffix Array (SA)

→ 48 bps

Longest Common Prefix (LCP)

LCP [i] = lcp (T [SA[i− 1 . . . n], T [SA[i . . . n])

42 / 42

Introduction
Work

Conclusions

Suffix Array (SA) → 48 bps

Longest Common Prefix (LCP)

LCP [i] = lcp (T [SA[i− 1 . . . n], T [SA[i . . . n])

42 / 42

Introduction
Work

Conclusions

Interval-based topology representation

42 / 42

Introduction
Work

Conclusions

State of the Art

Parenthesis topology: 4n + o(n) bits

Bitvector H: 2n + o(n) bits

lcp(T [SA[i] . . . n], T [SA[j] . . . n]) =
LCP [rank()(P, rmqexcess(P)(rank()(j), rank()(i)))]

Performance

Implementations based on Sadakane’s CST use ∼ 10 bps and
operate in the order of microseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Parenthesis topology: 4n + o(n) bits

Bitvector H: 2n + o(n) bits

lcp(T [SA[i] . . . n], T [SA[j] . . . n]) =
LCP [rank()(P, rmqexcess(P)(rank()(j), rank()(i)))]

Performance

Implementations based on Sadakane’s CST use ∼ 10 bps and
operate in the order of microseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Parenthesis topology: 4n + o(n) bits

Bitvector H: 2n + o(n) bits

lcp(T [SA[i] . . . n], T [SA[j] . . . n]) =
LCP [rank()(P, rmqexcess(P)(rank()(j), rank()(i)))]

Performance

Implementations based on Sadakane’s CST use ∼ 10 bps and
operate in the order of microseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Parenthesis topology: 4n + o(n) bits

Bitvector H: 2n + o(n) bits

lcp(T [SA[i] . . . n], T [SA[j] . . . n]) =
LCP [rank()(P, rmqexcess(P)(rank()(j), rank()(i)))]

Performance

Implementations based on Sadakane’s CST use ∼ 10 bps and
operate in the order of microseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Parenthesis topology: 4n + o(n) bits

Bitvector H: 2n + o(n) bits

lcp(T [SA[i] . . . n], T [SA[j] . . . n]) =
LCP [rank()(P, rmqexcess(P)(rank()(j), rank()(i)))]

Performance

Implementations based on Sadakane’s CST use ∼ 10 bps and
operate in the order of microseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

FM-index as CSA. Uses |CSA|+ o(n) bits

Sample of near nodes through suffix links

LCSA(u, v) = lowest common sampled ancestor of u and v

Performance

Implementations based on Russo’s CST use ∼ 4 bps but
operate in the order of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

FM-index as CSA. Uses |CSA|+ o(n) bits

Sample of near nodes through suffix links

LCSA(u, v) = lowest common sampled ancestor of u and v

Performance

Implementations based on Russo’s CST use ∼ 4 bps but
operate in the order of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

FM-index as CSA. Uses |CSA|+ o(n) bits

Sample of near nodes through suffix links

LCSA(u, v) = lowest common sampled ancestor of u and v

Performance

Implementations based on Russo’s CST use ∼ 4 bps but
operate in the order of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

FM-index as CSA. Uses |CSA|+ o(n) bits

Sample of near nodes through suffix links

LCSA(u, v) = lowest common sampled ancestor of u and v

Performance

Implementations based on Russo’s CST use ∼ 4 bps but
operate in the order of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

FM-index as CSA. Uses |CSA|+ o(n) bits

Sample of near nodes through suffix links

LCSA(u, v) = lowest common sampled ancestor of u and v

Performance

Implementations based on Russo’s CST use ∼ 4 bps but
operate in the order of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Run Length encoding of bitvector H
Does not use topology. Suffix tree nodes are represented as
suffix array intervals
rmq, psv/nsv over LCP simulate the operations

Performance

Implementations based on Fischer’s CST use ∼ 8 bps but
operate in the order of hundred of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Run Length encoding of bitvector H

Does not use topology. Suffix tree nodes are represented as
suffix array intervals
rmq, psv/nsv over LCP simulate the operations

Performance

Implementations based on Fischer’s CST use ∼ 8 bps but
operate in the order of hundred of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Run Length encoding of bitvector H
Does not use topology. Suffix tree nodes are represented as
suffix array intervals

rmq, psv/nsv over LCP simulate the operations

Performance

Implementations based on Fischer’s CST use ∼ 8 bps but
operate in the order of hundred of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Run Length encoding of bitvector H
Does not use topology. Suffix tree nodes are represented as
suffix array intervals
rmq, psv/nsv over LCP simulate the operations

Performance

Implementations based on Fischer’s CST use ∼ 8 bps but
operate in the order of hundred of milliseconds.

42 / 42

Introduction
Work

Conclusions

State of the Art

Run Length encoding of bitvector H
Does not use topology. Suffix tree nodes are represented as
suffix array intervals
rmq, psv/nsv over LCP simulate the operations

Performance

Implementations based on Fischer’s CST use ∼ 8 bps but
operate in the order of hundred of milliseconds. 42 / 42

Introduction
Work

Conclusions

State of the Art

42 / 42

Introduction
Work

Conclusions

Primitive Parentheses Operations

– excess(i) = rank((i)− rank)(i)

– leaf-rank(i) = rank()(i) = | {1 ≤ j ≤ i− 1 | P [j] = (∧ P [j + 1] =)} |
– leaf-select(j) = select()(j) = min({i | leaf-rank(i+ 1) = j} ∪ {∞})
– fwd-search(i, d) = min({j > i | excess(j) = excess(i) + d)} ∪ {∞})
– bwd-search(i, d) = max({j < i | excess(j) = excess(i) + d)} ∪ {−∞})
– min-excess(i, j) = min({excess(k)− excess(i− 1) | i ≤ k ≤ j} ∪ {∞})

Some reductions

tree-depth(v) = excess(v)

next-sibling(v) = fwd-search(v,−1) + 1

42 / 42

Introduction
Work

Conclusions

State of the Art

42 / 42

Introduction
Work

Conclusions

State of the Art

42 / 42

Introduction
Work

Conclusions

State of the Art

42 / 42

Introduction
Work

Conclusions

State of the Art

42 / 42

Introduction
Work

Conclusions

State of the Art

42 / 42

Introduction
Work

Conclusions

Block Tree: Access

42 / 42

Introduction
Work

Conclusions

Block Tree: Rank/Select

42 / 42

Introduction
Work

Conclusions

Block Tree Improvements

Introduced in “Queries on LZ-Bounded Encodings”
(QLZBE)

We proved properties stated in the publication

Implemented by Ordoñez

Differs from theoretical proposal

Does not ensure the Lempel-Ziv bound

We implemented Block Trees following the theoretical
proposal

A lot of new versions (not LZ bounded) emerge while
working on the paper version

block tree, block tree no clean, pruning c block tree,
heuristic block tree, heuristic concatenate block tree,
liberal heuristic block tree,
conservative heuristic block tree, back front block tree,
among others

42 / 42

Introduction
Work

Conclusions

Block Tree Improvements

Introduced in “Queries on LZ-Bounded Encodings”
(QLZBE)

We proved properties stated in the publication

Implemented by Ordoñez
Differs from theoretical proposal

Does not ensure the Lempel-Ziv bound

We implemented Block Trees following the theoretical
proposal

A lot of new versions (not LZ bounded) emerge while
working on the paper version

block tree, block tree no clean, pruning c block tree,
heuristic block tree, heuristic concatenate block tree,
liberal heuristic block tree,
conservative heuristic block tree, back front block tree,
among others

42 / 42

Introduction
Work

Conclusions

Block Tree Improvements

Introduced in “Queries on LZ-Bounded Encodings”
(QLZBE)

We proved properties stated in the publication

Implemented by Ordoñez
Differs from theoretical proposal

Does not ensure the Lempel-Ziv bound

We implemented Block Trees following the theoretical
proposal

A lot of new versions (not LZ bounded) emerge while
working on the paper version

block tree, block tree no clean, pruning c block tree,
heuristic block tree, heuristic concatenate block tree,
liberal heuristic block tree,
conservative heuristic block tree, back front block tree,
among others

42 / 42

Introduction
Work

Conclusions

Block Tree Improvements

Construction algorithm

Fix construction algorithm given at QLZBE

Pruning improvement

Removal of unnecessary expansions

New fields for the blocks

42 / 42

Introduction
Work

Conclusions

Block Tree Improvements

Construction algorithm

Fix construction algorithm given at QLZBE

Pruning improvement

Removal of unnecessary expansions

New fields for the blocks

42 / 42

Introduction
Work

Conclusions

Block Tree Improvements

Construction algorithm

Fix construction algorithm given at QLZBE

Pruning improvement

Removal of unnecessary expansions

New fields for the blocks

42 / 42

Introduction
Work

Conclusions

Unnecessary Expansions

42 / 42

Introduction
Work

Conclusions

Unnecessary Expansions

42 / 42

Introduction
Work

Conclusions

Results – Pruning

42 / 42

Introduction
Work

Conclusions

Prefix Set

42 / 42

Introduction
Work

Conclusions

Rank Set

42 / 42

Introduction
Work

Conclusions

Results – Fields for rank/select

42 / 42

Introduction
Work

Conclusions

Better Version

42 / 42

Introduction
Work

Conclusions

fwd-search(i, d ≤ 0)

42 / 42

Introduction
Work

Conclusions

fwd-search(i, d ≤ 0)

42 / 42

Introduction
Work

Conclusions

DABT

42 / 42

	Introduction
	Context
	Suffix Tree
	Suffix Tree Applications
	Compressed Suffix Tree
	Repetition-Aware CSTs
	Block Tree

	Work
	Work Done
	Block Tree Improvements
	Compressed Topologies
	Differential Arrays
	New CSTs

	Conclusions

